14£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÔÚÒÔÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È=sin¦È£®
£¨1£©ÇóÇúÏßC1µÄ¼«×ø±ê·½³ÌºÍÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÉäÏßl£ºy=kx£¨x¡Ý0£©ÓëÇúÏßC1£¬C2µÄ½»µã·Ö±ðΪA£¬B£¨A£¬BÒìÓÚÔ­µã£©£¬µ±Ð±ÂÊk¡Ê£¨1£¬$\sqrt{3}$]ʱ£¬Çó|OA|•|OB|µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÏȽ«C1µÄ²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬ÔÙ»ªÎª¼«×ø±ê·½³Ì£¬½«C2µÄ¼«×ø±ê·½³ÌÁ½±ßͬ³Ë¦Ñ£¬¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ¶ÔÓ¦¹ØÏµµÃ³öC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©Çó³ölµÄ²ÎÊý·½³Ì£¬·Ö±ð´úÈëC1£¬C2µÄÆÕͨ·½³Ì£¬¸ù¾Ý²ÎÊýµÄ¼¸ºÎÒâÒåµÃ³ö|OA|£¬|OB|£¬µÃµ½|OA|•|OB|¹ØÓÚkµÄº¯Êý£¬¸ù¾ÝkµÄ·¶Î§µÃ³ö´ð°¸£®

½â´ð ½â£º£¨1£©ÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌΪ£¨x-1£©2+y2=1£¬¼´x2+y2-2x=0£¬
¡àÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ¦Ñ2-2¦Ñcos¦È=0£¬¼´¦Ñ=2cos¦È£®
¡ßÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos2¦È=sin¦È£¬¼´¦Ñ2cos2¦È=¦Ñsin¦È£¬
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪx2=y£®
£¨2£©ÉèÉäÏßlµÄÇãб½ÇΪ¦Á£¬
ÔòÉäÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£¬$\frac{¦Ð}{4}£¼¦Á¡Ü\frac{¦Ð}{3}$£©£®
°ÑÉäÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏßC1µÄÆÕͨ·½³ÌµÃ£ºt2-2tcos¦Á=0£¬
½âµÃt1=0£¬t2=2cos¦Á£®
¡à|OA|=|t2|=2cos¦Á£®
°ÑÉäÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏßC2µÄÆÕͨ·½³ÌµÃ£ºcos2¦Át2=tsin¦Á£¬
½âµÃt1=0£¬t2=$\frac{sin¦Á}{co{s}^{2}¦Á}$£®
¡à|OB|=|t2|=$\frac{sin¦Á}{co{s}^{2}¦Á}$£®
¡à|OA|•|OB|=2cos¦Á•$\frac{sin¦Á}{co{s}^{2}¦Á}$=2tan¦Á=2k£®
¡ßk¡Ê£¨1£¬$\sqrt{3}$]£¬¡à2k¡Ê£¨2£¬2$\sqrt{3}$]£®
¡à|OA|•|OB|µÄȡֵ·¶Î§ÊÇ£¨2£¬2$\sqrt{3}$]£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬²ÎÊýµÄ¼¸ºÎÒâÒåµÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ìºÓ±±ºâË®ÖÐѧ¸ßÈýÉÏѧÆÚµ÷ÑÐÈý¿¼Êýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

Èô£¬ÔòµÄֵΪ___________£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶ÔÓ¦±ß·Ö±ðΪa£¬b£¬c£¬ÒÑÖªa=csinB+bcosC£®
£¨1£©ÇóA+CµÄÖµ£»
£¨2£©Èô$b=\sqrt{2}$£¬Çó¡÷ABCÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èôº¯Êýf£¨x£©=3-sin¦Øx-$\sqrt{3}$cos¦Øx£¨x¡ÊR£©µÄͼÏóÏòÓÒÆ½ÒÆ$\frac{4¦Ð}{3}$¸öµ¥Î»ºóÓëԭͼÏóÖØºÏ£¬ÔòÕýÊý¦ØµÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®$\frac{2}{3}$C£®$\frac{4}{3}$D£®$\frac{1}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=cost}\\{y=1+sint}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖᣬÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñcos¦È=-$\frac{\sqrt{3}}{2}$£®
£¨1£©°ÑÇúÏßC1µÄ²ÎÊý·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©ÇóÇúÏßC1ÓëÇúÏßC2µÄ½»µãµÄ¼«×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÒÑÖªÈýÀâÖùABC-A1B1C1ÖУ¬²àÃæA1ACC1¡Íµ×ÃæABC£¬µ×Ãæ±ß³¤µÄ²àÀⳤ¾ùΪ2£¬A1B=$\sqrt{6}$£®
£¨1£©ÇóÖ¤£ºA1B¡ÍÆ½ÃæAB1C£®
£¨2£©ÇóÖ±ÏßBC1µ½Æ½ÃæABB1A1Ëù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Éèa=$\frac{1}{2}$cos6¡ã-$\frac{\sqrt{3}}{2}$sin6¡ã£¬b=sin26¡ã£¬c=$\sqrt{\frac{1-cos50¡ã}{2}}$£¬ÔòÓУ¨¡¡¡¡£©
A£®a£¾b£¾cB£®a£¼b£¼cC£®a£¼c£¼bD£®b£¼c£¼a

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖª¸´Êýz1=-2+i£¬z1z2=-5+5i£¨ÆäÖÐiΪÐéÊýµ¥Î»£©
£¨1£©Çó¸´Êýz2£»
£¨2£©Èô¸´Êýz3=£¨3-z2£©[£¨m2-2m-3£©+£¨m-1£©i]Ëù¶ÔÓ¦µÄµãÔÚµÚËÄÏóÏÞ£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=3£¬an=an-1+$\frac{1}{n£¨n-1£©}$£¨n¡Ý2£©£¬ÇóÊýÁеÄͨÏîʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸