精英家教网 > 高中数学 > 题目详情
5.已知不等式ax2+bx+c>0的解集为$\left\{{x|-\frac{1}{3}<x<2}\right\}$,则不等式cx2+bx+a<0的解集为(  )
A.$\left\{{x|-3<x<\frac{1}{2}}\right\}$B.$\left\{{x|x<-3或x>\frac{1}{2}}\right\}$C.$\left\{{x|-2<x<\frac{1}{3}}\right\}$D.$\left\{{x|x<-2或x>\frac{1}{3}}\right\}$

分析 根据已知不等式的解集确定出a,b,c的值,代入所求不等式求出解集即可.

解答 解:由不等式ax2+bx+c>0的解集为-$\frac{1}{3}$<x<2,得到a<0,且ax2+bx+c=-(3x+1)(x-2)=-3x2+5x+2,
∴a=-3,b=5,c=2,
代入所求不等式得:2x2+5x-3<0,即(2x-1)(x+3)<0,
解得:-3<x<$\frac{1}{2}$,
则不等式cx2+bx+a<0的解集为{x|-3<x<$\frac{1}{2}$},
故选:A.

点评 此题考查了一元二次不等式的解法,利用了转化的思想,确定出a,b,c的值是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.设函数f(x)是定义在R上的以3为周期的函数,若f(2)=2,则f(-4)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若a=0.34,b=40.3,c=log0.34,则a,b,c的大小关系为b>a>c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知复数w满足w-4=(3-2w)i(i为虚数单位).
(1)求w;
(2)设z∈C,在复平面内求满足不等式1≤|z-w|≤2的点Z构成的图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在△ABC中,角A、B、C的对边分别为a、b、c,若2sinCcosB=2sinA+sinB,△ABC的面积为S=$\frac{\sqrt{3}}{12}$c,则ab的最小值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若集合A={x|x2-4<0},集合B={x|x<0},则A∩B={x|-2<x<0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)是定义在R上的偶函数,对任意x∈R,都有f(x+4)=f(x),且当x∈[-2,0]时,f(x)=($\frac{1}{3}$)x-6.若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则实数a的取值范围是$({\root{3}{4},2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若函数f(x)=x3-3ax+1在区间(0,1)内有极小值,则a的取值范围是(  )
A.(0,1)B.(0,1]C.[0,1)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.等边三角形ABC的边长为1,$\overrightarrow{BC}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,$\overrightarrow{AB}$=$\overrightarrow{c}$,那么$\overrightarrow{a}$•$\overrightarrow{b}$+$\overrightarrow{b}$•$\overrightarrow{c}$+$\overrightarrow{c}$•$\overrightarrow{a}$等于-$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案