13£®ÕýÏîÊýÁÐ{an}µÄǰÏîºÍSn£¬¶ÔÓÚÈÎÒâµÄÄÇn¡ÊN*£¬¶¼ÓÐa13+a23+a33+¡­+an3=Sn2
£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽan£»
£¨¢ò£©Áîbn=$\frac{{a}_{n+1}}{{{a}_{n}}^{2}•{{a}_{n+2}}^{2}}$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬Ö¤Ã÷£º¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐÓÐ$\frac{2}{9}$¡ÜTn£¼$\frac{5}{16}$£®

·ÖÎö £¨1£©Á½´ÎÔËÓá°Á½Ê½Ïà¼õ¡±µÃµ½an+13=2Sn+1-an+1£¬ºÍan+1-an=1£¬½ø¶øµÃµ½µÈ²îÊýÁУ¬Çó³öͨÏʽ£»
£¨2£©ÏÈÁÑÏîbn=$\frac{1}{4}$[$\frac{1}{n^2}$-$\frac{1}{£¨n+2£©^2}$]£¬ÔÙÇóºÍ£¬×îºó·ÅËõµÃµ½½áÂÛ£®

½â´ð ½â£º£¨1£©¸ù¾ÝÌâÒ⣬a13+a23+a33+¡­+an3=Sn2£¬
ËùÒÔ£¬a13+a23+a33+¡­+an3+an+13=Sn+12£¬
Á½Ê½Ïà¼õµÃ£¬an+13=Sn+12-Sn2£¬
ËùÒÔ£¬an+12=Sn+1+Sn=2Sn+1-an+1£¬-----¢Ù
Òò´Ë£¬an2=2Sn-an£¬------------------¢Ú
¢Ù¢ÚÁ½Ê½Ïà¼õµÃ£¬an+1-an=1£¬
ËùÒÔ£¬ÊýÁÐ{an}ΪµÈ²îÊýÁУ¬Ê×ÏîΪ1£¬¹«²îΪ1£¬
ËùÒÔ£¬an=n£»
£¨2£©¡ßbn=$\frac{{a}_{n+1}}{{{a}_{n}}^{2}•{{a}_{n+2}}^{2}}$=$\frac{n+1}{n^2•£¨n+2£©^2}$
=$\frac{1}{4}$•$\frac{£¨n+2£©^2-n^2}{n^2•£¨n+2£©^2}$=$\frac{1}{4}$[$\frac{1}{n^2}$-$\frac{1}{£¨n+2£©^2}$]£¬
¡àTn=$\frac{1}{4}$[£¨$\frac{1}{1^2}$-$\frac{1}{3^2}$£©+£¨$\frac{1}{2^2}$-$\frac{1}{4^2}$£©+£¨$\frac{1}{3^2}$-$\frac{1}{5^2}$£©+¡­+£¨$\frac{1}{n^2}$-$\frac{1}{£¨n+2£©^2}$£©]
=$\frac{1}{4}$[£¨$\frac{1}{1^2}$+$\frac{1}{2^2}$£©-£¨$\frac{1}{£¨n+1£©^2}$+$\frac{1}{£¨n+2£©^2}$£©]
ÏÔÈ»Tnµ¥µ÷µÝÔö£¬µ±n=1ʱ£¬£¨Tn£©min=$\frac{1}{4}$¡Á$\frac{8}{9}$=$\frac{2}{9}$£¬
ÇÒTn£¼$\frac{1}{4}$•£¨$\frac{1}{1^2}$+$\frac{1}{2^2}$£©=$\frac{5}{16}$£¬
¹Ê¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐÓÐ$\frac{2}{9}$¡ÜTn£¼$\frac{5}{16}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÊýÁÐͨÏʽµÄÇó½âºÍÊýÁв»µÈʽµÄÖ¤Ã÷£¬Éæ¼°µÈ²îÊýÁе͍ÒåºÍÔËÓÃÁÑÏîÏàÏûµÄ·½·¨¶ÔÊýÁÐÇóºÍ£¬ÒÔ¼°²»µÈʽµÄ·ÅËõ£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª$f£¨x£©=asin£¨2x+\frac{¦Ð}{6}£©+b$£¬£¨a£¬b¡ÊRÇÒa¡Ù0£©
£¨1£©µ±a=-2£¬b=0ʱ£¬Çóf£¨x£©µÄ×îСÕýÖÜÆÚÓëµ¥µ÷¼õÇø¼ä£»
£¨2£©µ±$x¡Ê[\frac{¦Ð}{4}£¬\frac{3¦Ð}{4}]$ʱ£¬ÆäÖµÓòΪ[-3£¬1]£¬Çóa£¬bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÔÚ£¨a+b£©nµÄ¶þÏîÕ¹¿ªÊ½ÖУ¬ÈôÆæÊýÏîµÄ¶þÏîʽϵÊýµÄºÍΪ128£¬Ôò¶þÏîʽϵÊýµÄ×î´óֵΪ70£¨½á¹ûÓÃÊý×Ö×÷´ð£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖª£ºµãE£¨1£¬0£©£¬µãAÔÚÖ±Ïßl1£ºx-y+1=0ÉÏÔ˶¯£¬¹ýµãA£¬EµÄÖ±ÏßlÓëÖ±Ïßl2£ºx+y+1=0½»ÓÚµãB£¬Ïß¶ÎABµÄÖеãMÔÚÒ»¸öÇúÏßÉÏÔ˶¯£¬ÔòÕâ¸öÇúÏߵķ½³ÌÊÇx2-y2=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®¸´Êý£¨a2-a-2£©+£¨a+1£©iÊÇ´¿ÐéÊý£¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®-1B£®-2C£®2D£®2»ò-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Èôº¯Êýf£¨x£©=x2-5x+1£¬Ôòf£¨x+1£©=x2-3x-3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖª¦Á£¬¦ÂΪÈñ½Ç£¬sin¦Á=$\frac{2\sqrt{5}}{5}$£¬sin¦Â=$\frac{3\sqrt{10}}{10}$£¬Ôò¦Á+¦Â=$\frac{3¦Ð}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èç¹û·ÇÁãÏòÁ¿$\overrightarrow{a}$¡¢$\overrightarrow{b}$Âú×ã$\overrightarrow{a}$=-3$\overrightarrow{b}$£¬Ôò$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¹ØÏµÊÇ£¨¡¡¡¡£©
A£®Æ½ÐÐB£®´¹Ö±C£®ÏཻD£®Ã»ÓйØÏµ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÈôÖ±Ïßl1£ºx-2y-1=0ºÍÖ±Ïßl2£º2x-ay-a=0ƽÐУ¬Ôò³£ÊýaµÄֵΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸