精英家教网 > 高中数学 > 题目详情
6.已知几何体ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE是矩形,FB=$\sqrt{2}$,M,N分别为EF,AB的中点.
(Ⅰ)求证:MN∥平面FCB;
(Ⅱ)若FC=1,求点A到平面MCB的距离.

分析 (I)取BC的中点Q,连接NQ,FQ,利用三角形中位线定理与平行四边形的判定可得四边形MNQF是平行四边形,因此MN∥FQ,再利用线面平行的判定定理即可证明.
(II)由AB∥CD,AD=DC=CB=1,∠ABC=60°,可得∠ACB=90°,AC=$\sqrt{3}$,AB=2.进而得到FC⊥BC,AC⊥BC,BC⊥平面ACFE.设点A到平面MCB的距离为h,则VA-MCB=$\frac{1}{3}{S}_{△MCB}$•h.四边形ACFE为矩形,又VA-MCB=VB-ACM=$\frac{1}{3}×BC×{S}_{△ACM}$,即可得出.

解答 (I)证明:取BC的中点Q,连接NQ,FQ,则NQ=$\frac{1}{2}$AC,NQ∥AC,
又MF=$\frac{1}{2}$AC,MF∥AC,
∴MF=NQ,MF∥NQ,则四边形MNQF是平行四边形,
∴MN∥FQ,FQ?平面FCB,MN?平面FCB,
∴MN∥平面FCB.
(II)解:∵AB∥CD,AD=DC=CB=1,∠ABC=60°,可得∠ACB=90°,AC=$\sqrt{3}$,AB=2.
又FC=1,FB=$\sqrt{2}$,BC=1,∴FC⊥BC,又∠ACB=90°,即AC⊥BC.∴BC⊥平面ACFE.
设点A到平面MCB的距离为h,则VA-MCB=$\frac{1}{3}{S}_{△MCB}$•h.
四边形ACFE为矩形,又VA-MCB=VB-ACM=$\frac{1}{3}×BC×{S}_{△ACM}$=$\frac{1}{3}×1×\frac{1}{2}×1×\sqrt{3}$=$\frac{\sqrt{3}}{6}$,
S△MCB=$\frac{1}{2}×1×$$\sqrt{1+(\frac{\sqrt{3}}{2})^{2}}$=$\frac{\sqrt{7}}{4}$,
∴h=$\frac{\frac{\sqrt{3}}{6}}{\frac{1}{3}×\frac{\sqrt{7}}{4}}$=$\frac{2\sqrt{21}}{7}$,则点A到平面MCB的距离为$\frac{2\sqrt{21}}{7}$.

点评 本题考查了空间位置关系、线面平行的判定定理、三角形中位线定理、平行四边形的判定与性质定理、直角三角形的判定与性质、三棱锥的体积计算公式、“等体积法”,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图所示,MN为⊙O的直径,PD、PN是切线,切点分别为D和N.
(1))求证:MD∥OP;
(2)若⊙O的半径等于2,求MD•OP的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.第24届冬奥会将于2022年在我国北京和张家口举行,为了搞好接待工作,组委会招募了16名男志愿者和14名女志愿者,调查发现,男,女志愿者中分别有10人和6人喜爱运动,其余人不喜爱运动.
( I)根据以上数据完成以下2×2列联表:
喜爱运动不喜爱运动总计
1016
614
总计30
( II)根据列联表的独立性检验,能否在犯错误的概率不超过0.10的前提下认为性别与喜爱运动有关?
( III)如果从喜欢运动的女志愿者中(其中恰有4人会外语),抽取2名负责翻译工作,那么抽出的志愿者中至少有1人能胜任翻译工作的概率是多少?
附:${Χ^2}=\frac{{n({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}}{{{n_{1+}}•{n_{2+}}•{n_{+1}}•{n_{+2}}}}$
独立检验临界值表:
P(χ2≥k00.400.250.100.010
k00.7081.3232.7066.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.长方形ABCD的长和宽分别为AB=a,BC=b,且a<b,则绕AB=a旋转一周所得的几何体体积为V1,绕BC=b旋转一周所得的几何体体积为V2,则V1与V2的关系是(  )
A.V1=V2B.V1<V2C.V1>V2D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,△ABC是⊙O的内接三角形,且AB=AC,AP∥BC,弦CE的延长线交AP于点D,求证:AD2=DE•DC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,一个摩天轮的半径为18m,12分钟旋转一周,它的最低点P0离地面2m,
∠P0OP1=15°,摩天轮上的一个点P从P1开始按逆时针方向旋转,则点P离地
面距离y(m)与时间x(分钟)之间的函数关系式是(  )
A.$y=-18cos\frac{π}{12}(x+1)+20$B.$y=-18cos\frac{π}{12}(x-1)+20$
C.$y=-18cos\frac{π}{6}(x+\frac{1}{2})+20$D.$y=-18cos\frac{π}{6}(x-\frac{1}{2})+20$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=x4-lnx+ax3在[3,5]上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,P为⊙O外一点,PA是⊙O的切线,A为切点,割线PBC与⊙O相交于B,C两点,且PC=3PA,D为线段BC的中点,AD的延长线交⊙O于点E.若PB=1,则PA的长为3;AD•DE的值是16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(2cos x,sin x),$\overrightarrow{b}$=(cos x,-2cos x).设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求f(x)的解析式
(2)求f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案