精英家教网 > 高中数学 > 题目详情
15.如图所示,MN为⊙O的直径,PD、PN是切线,切点分别为D和N.
(1))求证:MD∥OP;
(2)若⊙O的半径等于2,求MD•OP的值.

分析 (1)连结DN、OD,利用PD、PN是切线,所以DN⊥OP,MN为⊙O的直径,所以DM⊥DN,可得∠DOP=∠MDO,即可证明MD∥OP;
(2)证明Rt△NMD~Rt△POD,可得$\frac{MD}{OD}=\frac{NM}{PO}$,即可求MD•OP的值.

解答 (1)证明:如图,连结DN、OD,
因为PD、PN是切线,所以DN⊥OP,
因此∠DOP+∠ODN=90°,
又因为MN为⊙O的直径,所以DM⊥DN,
因此∠MDO+∠ODN=90°,
于是∠DOP=∠MDO,故MD∥OP.
(2)解:由于∠NMD=∠POD,∴Rt△NMD~Rt△POD,
于是$\frac{MD}{OD}=\frac{NM}{PO}$,因此MD•OP=NM•OD=4×2=8.

点评 本题考查圆的切线的性质,考查直径所对的角为圆周角,考查三角形相似的判定与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若用反证法证明命题:三角形的内角中至少有一个大于60°,则与命题结论相矛盾的假设为(  )
A.假设三角形的3个内角都大于60°
B.假设三角形的3个内角都不大于60°
C.假设三角形的3个内角中至多有一个大于60°
D.假设三角形的3个内角中至多有两个大于60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点A(1,3),B(2,-3),C(m,0),向量$\overrightarrow{AB}•\overrightarrow{BC}=0$,则实数m的值是(  )
A.20B.21C.22D.23

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若a、b满足条件3+log2a=2-log2b(a>0,b>0),则$\frac{1}{a}$+$\frac{1}{b}$的最小值为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知|${\overrightarrow{OA}}$|=1,|${\overrightarrow{OB}}$|=2,∠AOB=$\frac{2π}{3}$,$\overrightarrow{OC}$=$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{4}$$\overrightarrow{OB}$,则$\overrightarrow{OA}$•$\overrightarrow{OC}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.如图1是一个几何体的主视图和左视图(上面是边长为4的正三角形,下面是矩形),图2是它的俯视图(圆内切于边长为4的正方形),则该几何体的体积为16+$\frac{8\sqrt{3}}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设0<m<$\frac{1}{2}$,若$\frac{1}{m}$+$\frac{2}{1-2m}$≥k2-2k恒成立,则k的取值范围为(  )
A.[-2,0)∪(0,4]B.[-4,0)∪(0,2]C.[-4,2]D.[-2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.三个半径都是1的球放在一个圆柱内,每个球都接触到圆柱的底,则圆柱半径的最小值是(  )
A.$\frac{{2\sqrt{3}}}{3}+1$B.$\frac{{2\sqrt{2}}}{3}+1$C.$\sqrt{3}+1$D.$\frac{{3\sqrt{3}}}{4}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知几何体ABCDEF中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE是矩形,FB=$\sqrt{2}$,M,N分别为EF,AB的中点.
(Ⅰ)求证:MN∥平面FCB;
(Ⅱ)若FC=1,求点A到平面MCB的距离.

查看答案和解析>>

同步练习册答案