精英家教网 > 高中数学 > 题目详情
5.若用反证法证明命题:三角形的内角中至少有一个大于60°,则与命题结论相矛盾的假设为(  )
A.假设三角形的3个内角都大于60°
B.假设三角形的3个内角都不大于60°
C.假设三角形的3个内角中至多有一个大于60°
D.假设三角形的3个内角中至多有两个大于60°

分析 根据命题:三角形的内角中至少有一个大于60°的否定为假设三角形的3个内角都不大于60°,得到答案.

解答 解:根据用反证法证明数学命题的方法和步骤,先把要证的结论进行否定,得到要证的结论的反面,
而命题:三角形的内角中至少有一个大于60°的否定为假设三角形的3个内角都不大于60°,
故选:B.

点评 本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,梯形ABEF中,AB∥EF,AF⊥BF,O,M分别是AB,FC的中点,矩形ABCD所在的平面与ABEF所在的平面互相垂直,且AB=2,AD=EF=1.
(1)证明:AF⊥平面CBF;
(2)证明:OM∥平面DAF;
(3)若二面角D-BC-F为60°,求直线EM与平面CBF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知命题p:?x∈R,x2+2x+3=0,则¬p是?x∈R,x2+2x+3≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.集合A={2,0,1,6},B={x|x+a>0,x∈R},A⊆B,则实数a的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x),x∈R是有界函数,即存在M>0使得|f(x)|≤M恒成立.
(1)F(x)=f(x+1)-f(x)是有界函数,则f(x),x∈R是否是有界函数?说明理由;
(2)判断f1(x)=$\frac{4x}{{{x^2}-2x+3}}$,f2(x)=9x-2•3x是否是有界函数?
(3)有界函数f(x),x∈R满足f(x+$\frac{1}{4}}$)+f(x+$\frac{1}{3}}$)=f(x)+f(x+$\frac{7}{12}}$),f(x),x∈R是否是周期函数,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.$n=\overline{ab}$表示一个两位数,记f(n)=a+b+a×b,如f(12)=1+2+1×2=5,则满足f(n)=n的两位数共有9个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知{an},{bn}为两非零有理数列(即对任意的i∈N*,ai,bi均为有理数),{dn}为一无理数列(即对任意的i∈N*,di为无理数).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0对任意的n∈N*恒成立,试求{dn}的通项公式.
(2)若{dn2}为有理数列,试证明:对任意的n∈N*,(an+bndn-andn2)(1+dn2)=1+dn恒成立的充要条件为$\left\{\begin{array}{l}{a_n}=\frac{1}{1-d_n^4}\\{b_n}=\frac{1}{1+d_n^2}\end{array}$.
(3)已知sin2θ=$\frac{24}{25}$(0<θ<$\frac{π}{2}$),dn=$\root{3}{{tan(n•\frac{π}{2})+{{(-1)}^n}θ}}$,对任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立,试计算bn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.2016届高三某次联考之后,某中学的数学教师对A班和B班共n名学生的数学成绩进行了统计(满分150分),得到如下各分数段内的男生人数统计表和各个分数段人数的频率分布直方图.

 组数 分组 男生 占本组的频率
 第一组[80,90) 12 0.6
 第二组[90,100) 10 p
 第三组[100,110) 10 0.5
 第四组[110,120) a 0.4
 第五组[120,130) 3 0.3
 第六组[130,140] 6 0.6
(1)求n,a,p的值和频率分布直方图中第二组矩形的高;
(2)分数在[130,140]的男生中,A班有4人,从这6个男生中任选2人进行学习经验交流,求取到2人中至少一名是B班男生的概率;
(3)若110分(含110分)以上为优秀.
(i)完成下面的2×2列联表,并求出男生和女生的优秀率;
          成绩
性别
 优秀不优秀  总计
 男生   
 女生   
 总计   
(ii)根据上面表格的数据,判断是否有90%以上的把握认为“数学成绩与性别有关”?
附表及公式:
 P(K2≥k) 0.1000.050 0.010 0.001 
 k 2.706 3.841 6.63510.828 
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,MN为⊙O的直径,PD、PN是切线,切点分别为D和N.
(1))求证:MD∥OP;
(2)若⊙O的半径等于2,求MD•OP的值.

查看答案和解析>>

同步练习册答案