·ÖÎö £¨1£©ÓÉ$d_n^2+1¡Ù0$£¬¿ÉµÃ${a_n}d_n^2-{b_n}{d_n}-{a_n}=0$£¬¼´${a_n}d_n^2+2{a_n}{d_n}-{a_n}=0$£¬ÓÉan¡Ù0£¬¿ÉµÃ$d_n^2+2{d_n}-1=0$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÓÉ$£¨{a_n}+{b_n}{d_n}-{a_n}d_n^2£©£¨1+d_n^2£©=1+{d_n}$£¬¿ÉµÃ${a_n}+{b_n}{d_n}+{b_n}d_n^3-{a_n}d_n^4=1+{d_n}$£¬${a_n}£¨1-d_n^4£©+{b_n}{d_n}£¨1+d_n^2£©=1+{d_n}$£¬ÀûÓÃ$\{d_n^2\}$ΪÓÐÀíÊýÁУ¬¿ÉµÃ$\left\{\begin{array}{l}{a_n}£¨1-d_n^4£©=1\\{b_n}£¨1+d_n^2£©=1\end{array}\right.$£¬½â³ö¼´¿ÉµÃ³ö£¬ÓÉÓÚÒÔÉÏÿһ²½¿ÉÄæ£¬¼´¿ÉÖ¤Ã÷£®
£¨3£©ÓÉ$sin2¦È=\frac{2tan¦È}{{1+{{tan}^2}¦È}}=\frac{24}{25}$£¬£¨0£¼¦È£¼$\frac{¦Ð}{2}$£©£¬¿ÉµÃ25tan¦È=12+12tan2¦È£®¿ÉµÃ$d_n^3=tan£¨n•\frac{¦Ð}{2}+{£¨-1£©^n}¦È£©$£¬µ±n=2k£¨k¡ÊN*£©Ê±£¬¡à$d_n^3=tan£¨2k•\frac{¦Ð}{2}+¦È£©=tan¦È$£¬µ±n=2k-1£¨k¡ÊN*£©Ê±£¬$d_n^3=tan£¨£¨2k-1£©•\frac{¦Ð}{2}-¦È£©=cot¦È$£®¿ÉµÃ$\left\{{d_n^3}\right\}$ΪÓÐÀíÊýÁУ¬ÀûÓÃ$£¨{a_n}+{b_n}{d_n}-{a_n}d_n^2£©£¨1+d_n^2£©=1$£¬¿ÉµÃ${a_n}+{b_n}d_n^3+{d_n}£¨{b_n}-{a_n}d_n^3£©=1$£¬ÓÉÓÚ$\{{a_n}\}£¬\{{b_n}\}£¬\{d_n^3\}$ΪÓÐÀíÊýÁУ¬{dn}ΪÎÞÀíÊýÁУ¬¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©¡ß$d_n^2+1¡Ù0$£¬¡à${a_n}+{b_n}{d_n}-{a_n}d_n^2=0$£¬¼´${a_n}d_n^2-{b_n}{d_n}-{a_n}=0$£¬
¡à${a_n}d_n^2+2{a_n}{d_n}-{a_n}=0$£¬¡ßan¡Ù0£¬¡à$d_n^2+2{d_n}-1=0$£¬¡à${d_n}=-1¡À\sqrt{2}$£®
£¨2£©Ö¤Ã÷£º¡ß$£¨{a_n}+{b_n}{d_n}-{a_n}d_n^2£©£¨1+d_n^2£©=1+{d_n}$£¬
¡à${a_n}+{b_n}{d_n}+{b_n}d_n^3-{a_n}d_n^4=1+{d_n}$£¬
¡à${a_n}-{a_n}d_n^4+{b_n}{d_n}+{b_n}d_n^3=1+{d_n}$£¬
¡à${a_n}£¨1-d_n^4£©+{b_n}{d_n}£¨1+d_n^2£©=1+{d_n}$£¬
¡ß$\{d_n^2\}$ΪÓÐÀíÊýÁУ¬¡à$\left\{\begin{array}{l}{a_n}£¨1-d_n^4£©=1\\{b_n}£¨1+d_n^2£©=1\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{a_n}=\frac{1}{1-d_n^4}\\{b_n}=\frac{1}{1+d_n^2}\end{array}\right.$£¬ÒÔÉÏÿһ²½¿ÉÄæ£¬¼´¿ÉÖ¤Ã÷£®
£¨3£©¡ß$sin2¦È=\frac{2tan¦È}{{1+{{tan}^2}¦È}}=\frac{24}{25}$£¬£¨0£¼¦È£¼$\frac{¦Ð}{2}$£©£¬
¡à25tan¦È=12+12tan2¦È£¬
¡à$tan¦È=\frac{3}{4}$»ò$tan¦È=\frac{4}{3}$
¡ß${d_n}=\root{3}{{tan£¨n•\frac{¦Ð}{2}+{{£¨-1£©}^n}¦È£©}}$£¬
¡à$d_n^3=tan£¨n•\frac{¦Ð}{2}+{£¨-1£©^n}¦È£©$£¬
µ±n=2k£¨k¡ÊN*£©Ê±£¬¡à$d_n^3=tan£¨2k•\frac{¦Ð}{2}+¦È£©=tan¦È$£¬
µ±n=2k-1£¨k¡ÊN*£©Ê±£¬¡à$d_n^3=tan£¨£¨2k-1£©•\frac{¦Ð}{2}-¦È£©=cot¦È$£®
¡à$\left\{{d_n^3}\right\}$ΪÓÐÀíÊýÁУ¬
¡ß$£¨{a_n}+{b_n}{d_n}-{a_n}d_n^2£©£¨1+d_n^2£©=1$£¬¡à${a_n}d_n^2+{a_n}+{b_n}d_n^3+{b_n}{d_n}-{a_n}d_n^4-{a_n}d_n^2=1$£¬
¡à${a_n}+{b_n}d_n^3+{d_n}£¨{b_n}-{a_n}d_n^3£©=1$£¬
¡ß$\{{a_n}\}£¬\{{b_n}\}£¬\{d_n^3\}$ΪÓÐÀíÊýÁУ¬{dn}ΪÎÞÀíÊýÁУ¬
¡à$\left\{\begin{array}{l}{a_n}+{b_n}d_n^3=1\\{b_n}-{a_n}d_n^3=0\end{array}\right.$£¬¡à${b_n}=\frac{d_n^3}{1+d_n^6}$£¬
¡à${b_n}=\frac{d_n^3}{1+d_n^6}=\frac{{tan£¨n•\frac{¦Ð}{2}+{{£¨-1£©}^n}¦È£©}}{{1+{{tan}^2}£¨n•\frac{¦Ð}{2}+{{£¨-1£©}^n}¦È£©}}=\frac{1}{2}sin£¨n•¦Ð+2{£¨-1£©^n}¦È£©$£®
µ±n=2k£¨k¡ÊN*£©Ê±£¬¡à${b_n}=\frac{1}{2}sin£¨2k•¦Ð+2¦È£©=\frac{1}{2}sin2¦È=\frac{12}{25}$£®
µ±n=2k-1£¨k¡ÊN*£©Ê±£¬¡à${b_n}=\frac{1}{2}sin£¨£¨2k-1£©•¦Ð-2¦È£©=\frac{1}{2}sin2¦È=\frac{12}{25}$£¬
¡à${b_n}=\frac{12}{25}$£®
µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆ¹ØÏµ¡¢ÊýÁеÄͨÏʽ¡¢Èý½Çº¯ÊýÇóÖµ¡¢±¶½Ç¹«Ê½¡¢ºÍ²î¹«Ê½£¬¿¼²éÁË·ÖÀàÌÖÂÛ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¼ÙÉèÈý½ÇÐεÄ3¸öÄڽǶ¼´óÓÚ60¡ã | |
| B£® | ¼ÙÉèÈý½ÇÐεÄ3¸öÄڽǶ¼²»´óÓÚ60¡ã | |
| C£® | ¼ÙÉèÈý½ÇÐεÄ3¸öÄÚ½ÇÖÐÖÁ¶àÓÐÒ»¸ö´óÓÚ60¡ã | |
| D£® | ¼ÙÉèÈý½ÇÐεÄ3¸öÄÚ½ÇÖÐÖÁ¶àÓÐÁ½¸ö´óÓÚ60¡ã |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | SΪ³£Êý£¬V²»È·¶¨ | B£® | S²»È·¶¨£¬VΪ³£Êý | C£® | S¡¢V¾ùΪ³£Êý | D£® | S¡¢V¾ù²»È·¶¨ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [1£¬$\sqrt{2}$£© | B£® | [1£¬$\sqrt{2}$] | C£® | [-$\sqrt{2}$£¬1] | D£® | £¨-$\sqrt{2}$£¬-1] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| X | -1 | 0 | 1 |
| P | $\frac{1}{2}$ | $\frac{1}{6}$ | a |
| A£® | 0 | B£® | $-\frac{1}{6}$ | C£® | 1 | D£® | $\frac{29}{36}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 20 | B£® | 21 | C£® | 22 | D£® | 23 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | [-2£¬0£©¡È£¨0£¬4] | B£® | [-4£¬0£©¡È£¨0£¬2] | C£® | [-4£¬2] | D£® | [-2£¬4] |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com