17£®ÒÑÖª{an}£¬{bn}ΪÁ½·ÇÁãÓÐÀíÊýÁУ¨¼´¶ÔÈÎÒâµÄi¡ÊN*£¬ai£¬bi¾ùΪÓÐÀíÊý£©£¬{dn}ΪһÎÞÀíÊýÁУ¨¼´¶ÔÈÎÒâµÄi¡ÊN*£¬diΪÎÞÀíÊý£©£®
£¨1£©ÒÑÖªbn=-2an£¬²¢ÇÒ£¨an+bndn-andn2£©£¨1+dn2£©=0¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£¬ÊÔÇó{dn}µÄͨÏʽ£®
£¨2£©Èô{dn2}ΪÓÐÀíÊýÁУ¬ÊÔÖ¤Ã÷£º¶ÔÈÎÒâµÄn¡ÊN*£¬£¨an+bndn-andn2£©£¨1+dn2£©=1+dnºã³ÉÁ¢µÄ³äÒªÌõ¼þΪ$\left\{\begin{array}{l}{a_n}=\frac{1}{1-d_n^4}\\{b_n}=\frac{1}{1+d_n^2}\end{array}$£®
£¨3£©ÒÑÖªsin2¦È=$\frac{24}{25}$£¨0£¼¦È£¼$\frac{¦Ð}{2}$£©£¬dn=$\root{3}{{tan£¨n•\frac{¦Ð}{2}£©+{{£¨-1£©}^n}¦È}}$£¬¶ÔÈÎÒâµÄn¡ÊN*£¬£¨an+bndn-andn2£©£¨1+dn2£©=1ºã³ÉÁ¢£¬ÊÔ¼ÆËãbn£®

·ÖÎö £¨1£©ÓÉ$d_n^2+1¡Ù0$£¬¿ÉµÃ${a_n}d_n^2-{b_n}{d_n}-{a_n}=0$£¬¼´${a_n}d_n^2+2{a_n}{d_n}-{a_n}=0$£¬ÓÉan¡Ù0£¬¿ÉµÃ$d_n^2+2{d_n}-1=0$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÓÉ$£¨{a_n}+{b_n}{d_n}-{a_n}d_n^2£©£¨1+d_n^2£©=1+{d_n}$£¬¿ÉµÃ${a_n}+{b_n}{d_n}+{b_n}d_n^3-{a_n}d_n^4=1+{d_n}$£¬${a_n}£¨1-d_n^4£©+{b_n}{d_n}£¨1+d_n^2£©=1+{d_n}$£¬ÀûÓÃ$\{d_n^2\}$ΪÓÐÀíÊýÁУ¬¿ÉµÃ$\left\{\begin{array}{l}{a_n}£¨1-d_n^4£©=1\\{b_n}£¨1+d_n^2£©=1\end{array}\right.$£¬½â³ö¼´¿ÉµÃ³ö£¬ÓÉÓÚÒÔÉÏÿһ²½¿ÉÄæ£¬¼´¿ÉÖ¤Ã÷£®
£¨3£©ÓÉ$sin2¦È=\frac{2tan¦È}{{1+{{tan}^2}¦È}}=\frac{24}{25}$£¬£¨0£¼¦È£¼$\frac{¦Ð}{2}$£©£¬¿ÉµÃ25tan¦È=12+12tan2¦È£®¿ÉµÃ$d_n^3=tan£¨n•\frac{¦Ð}{2}+{£¨-1£©^n}¦È£©$£¬µ±n=2k£¨k¡ÊN*£©Ê±£¬¡à$d_n^3=tan£¨2k•\frac{¦Ð}{2}+¦È£©=tan¦È$£¬µ±n=2k-1£¨k¡ÊN*£©Ê±£¬$d_n^3=tan£¨£¨2k-1£©•\frac{¦Ð}{2}-¦È£©=cot¦È$£®¿ÉµÃ$\left\{{d_n^3}\right\}$ΪÓÐÀíÊýÁУ¬ÀûÓÃ$£¨{a_n}+{b_n}{d_n}-{a_n}d_n^2£©£¨1+d_n^2£©=1$£¬¿ÉµÃ${a_n}+{b_n}d_n^3+{d_n}£¨{b_n}-{a_n}d_n^3£©=1$£¬ÓÉÓÚ$\{{a_n}\}£¬\{{b_n}\}£¬\{d_n^3\}$ΪÓÐÀíÊýÁУ¬{dn}ΪÎÞÀíÊýÁУ¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©¡ß$d_n^2+1¡Ù0$£¬¡à${a_n}+{b_n}{d_n}-{a_n}d_n^2=0$£¬¼´${a_n}d_n^2-{b_n}{d_n}-{a_n}=0$£¬
¡à${a_n}d_n^2+2{a_n}{d_n}-{a_n}=0$£¬¡ßan¡Ù0£¬¡à$d_n^2+2{d_n}-1=0$£¬¡à${d_n}=-1¡À\sqrt{2}$£®
£¨2£©Ö¤Ã÷£º¡ß$£¨{a_n}+{b_n}{d_n}-{a_n}d_n^2£©£¨1+d_n^2£©=1+{d_n}$£¬
¡à${a_n}+{b_n}{d_n}+{b_n}d_n^3-{a_n}d_n^4=1+{d_n}$£¬
¡à${a_n}-{a_n}d_n^4+{b_n}{d_n}+{b_n}d_n^3=1+{d_n}$£¬
¡à${a_n}£¨1-d_n^4£©+{b_n}{d_n}£¨1+d_n^2£©=1+{d_n}$£¬
¡ß$\{d_n^2\}$ΪÓÐÀíÊýÁУ¬¡à$\left\{\begin{array}{l}{a_n}£¨1-d_n^4£©=1\\{b_n}£¨1+d_n^2£©=1\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{a_n}=\frac{1}{1-d_n^4}\\{b_n}=\frac{1}{1+d_n^2}\end{array}\right.$£¬ÒÔÉÏÿһ²½¿ÉÄæ£¬¼´¿ÉÖ¤Ã÷£®
£¨3£©¡ß$sin2¦È=\frac{2tan¦È}{{1+{{tan}^2}¦È}}=\frac{24}{25}$£¬£¨0£¼¦È£¼$\frac{¦Ð}{2}$£©£¬
¡à25tan¦È=12+12tan2¦È£¬
¡à$tan¦È=\frac{3}{4}$»ò$tan¦È=\frac{4}{3}$
¡ß${d_n}=\root{3}{{tan£¨n•\frac{¦Ð}{2}+{{£¨-1£©}^n}¦È£©}}$£¬
¡à$d_n^3=tan£¨n•\frac{¦Ð}{2}+{£¨-1£©^n}¦È£©$£¬
µ±n=2k£¨k¡ÊN*£©Ê±£¬¡à$d_n^3=tan£¨2k•\frac{¦Ð}{2}+¦È£©=tan¦È$£¬
µ±n=2k-1£¨k¡ÊN*£©Ê±£¬¡à$d_n^3=tan£¨£¨2k-1£©•\frac{¦Ð}{2}-¦È£©=cot¦È$£®
¡à$\left\{{d_n^3}\right\}$ΪÓÐÀíÊýÁУ¬
¡ß$£¨{a_n}+{b_n}{d_n}-{a_n}d_n^2£©£¨1+d_n^2£©=1$£¬¡à${a_n}d_n^2+{a_n}+{b_n}d_n^3+{b_n}{d_n}-{a_n}d_n^4-{a_n}d_n^2=1$£¬
¡à${a_n}+{b_n}d_n^3+{d_n}£¨{b_n}-{a_n}d_n^3£©=1$£¬
¡ß$\{{a_n}\}£¬\{{b_n}\}£¬\{d_n^3\}$ΪÓÐÀíÊýÁУ¬{dn}ΪÎÞÀíÊýÁУ¬
¡à$\left\{\begin{array}{l}{a_n}+{b_n}d_n^3=1\\{b_n}-{a_n}d_n^3=0\end{array}\right.$£¬¡à${b_n}=\frac{d_n^3}{1+d_n^6}$£¬
¡à${b_n}=\frac{d_n^3}{1+d_n^6}=\frac{{tan£¨n•\frac{¦Ð}{2}+{{£¨-1£©}^n}¦È£©}}{{1+{{tan}^2}£¨n•\frac{¦Ð}{2}+{{£¨-1£©}^n}¦È£©}}=\frac{1}{2}sin£¨n•¦Ð+2{£¨-1£©^n}¦È£©$£®
µ±n=2k£¨k¡ÊN*£©Ê±£¬¡à${b_n}=\frac{1}{2}sin£¨2k•¦Ð+2¦È£©=\frac{1}{2}sin2¦È=\frac{12}{25}$£®
µ±n=2k-1£¨k¡ÊN*£©Ê±£¬¡à${b_n}=\frac{1}{2}sin£¨£¨2k-1£©•¦Ð-2¦È£©=\frac{1}{2}sin2¦È=\frac{12}{25}$£¬
¡à${b_n}=\frac{12}{25}$£®

µãÆÀ ±¾Ì⿼²éÁ˵ÝÍÆ¹ØÏµ¡¢ÊýÁеÄͨÏʽ¡¢Èý½Çº¯ÊýÇóÖµ¡¢±¶½Ç¹«Ê½¡¢ºÍ²î¹«Ê½£¬¿¼²éÁË·ÖÀàÌÖÂÛ·½·¨¡¢ÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖª|x-1|+|2-x|=1£¬ÔòxµÄȡֵ·¶Î§ÊÇ[1£¬2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=4sinxcos£¨x+$\frac{¦Ð}{6}$£©+1£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝ¼õÇø¼ä£»
£¨2£©ÔÚ¡÷ABC£¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Èôf£¨A£©=2£¬a=3£¬S¡÷ABC=$\sqrt{3}$£¬Çób2+c2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÈôÓ÷´Ö¤·¨Ö¤Ã÷ÃüÌ⣺Èý½ÇÐεÄÄÚ½ÇÖÐÖÁÉÙÓÐÒ»¸ö´óÓÚ60¡ã£¬ÔòÓëÃüÌâ½áÂÛÏàì¶ÜµÄ¼ÙÉèΪ£¨¡¡¡¡£©
A£®¼ÙÉèÈý½ÇÐεÄ3¸öÄڽǶ¼´óÓÚ60¡ã
B£®¼ÙÉèÈý½ÇÐεÄ3¸öÄڽǶ¼²»´óÓÚ60¡ã
C£®¼ÙÉèÈý½ÇÐεÄ3¸öÄÚ½ÇÖÐÖÁ¶àÓÐÒ»¸ö´óÓÚ60¡ã
D£®¼ÙÉèÈý½ÇÐεÄ3¸öÄÚ½ÇÖÐÖÁ¶àÓÐÁ½¸ö´óÓÚ60¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Ö±Ïßa¡¢bÊǿռäÒ»×éÒìÃæÖ±Ïߣ¬³¤¶ÈÈ·¶¨µÄÏß¶ÎABÔÚÖ±ÏßaÉÏ»¬¶¯£¬³¤¶ÈÈ·¶¨µÄÏß¶ÎCDÔÚÖ±ÏßbÉÏ»¬¶¯£¬¡÷ACDµÄÃæ»ý¼ÇΪS£¬ËÄÃæÌåABCDµÄÌå»ý¼ÇΪV£¬Ôò£¨¡¡¡¡£©
A£®SΪ³£Êý£¬V²»È·¶¨B£®S²»È·¶¨£¬VΪ³£ÊýC£®S¡¢V¾ùΪ³£ÊýD£®S¡¢V¾ù²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Ö±Ïßx+y+a=0°ëÔ²Óëy=$\sqrt{1-{x^2}}$ÓÐÁ½¸ö²»Í¬µÄ½»µã£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[1£¬$\sqrt{2}$£©B£®[1£¬$\sqrt{2}$]C£®[-$\sqrt{2}$£¬1]D£®£¨-$\sqrt{2}$£¬-1]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªXµÄ·Ö²¼ÁÐΪ£ºÉèY=6X+1£¬ÔòYµÄÊýѧÆÚÍûE£¨Y£©µÄÖµÊÇ£¨¡¡¡¡£©
X-101
P$\frac{1}{2}$$\frac{1}{6}$a
A£®0B£®$-\frac{1}{6}$C£®1D£®$\frac{29}{36}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªµãA£¨1£¬3£©£¬B£¨2£¬-3£©£¬C£¨m£¬0£©£¬ÏòÁ¿$\overrightarrow{AB}•\overrightarrow{BC}=0$£¬ÔòʵÊýmµÄÖµÊÇ£¨¡¡¡¡£©
A£®20B£®21C£®22D£®23

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Éè0£¼m£¼$\frac{1}{2}$£¬Èô$\frac{1}{m}$+$\frac{2}{1-2m}$¡Ýk2-2kºã³ÉÁ¢£¬ÔòkµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[-2£¬0£©¡È£¨0£¬4]B£®[-4£¬0£©¡È£¨0£¬2]C£®[-4£¬2]D£®[-2£¬4]

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸