精英家教网 > 高中数学 > 题目详情
7.已知|x-1|+|2-x|=1,则x的取值范围是[1,2].

分析 分别讨论①x≥1,②-2<x<1,③x≤-2,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.

解答 解:当x≥2时,原方程就可化简为:x-1+x-2=1,解得:x=2,符合题意;
当1<x<2时,原方程就可化简为:x-1+2-x=1,解得,x为全体实数,符合题意;
当x≤1时,原方程就可化简为:-x+1+2-x=1,解得:x=1符合题意;
所以x的取值范围是:1≤x≤2.
故答案为:[1,2].

点评 本题考查了含绝对值符号的方程的解法,难度适中,关键是正确分类讨论x的取值范围,然后去掉绝对值求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.圆ρ=2cosθ与圆ρ=sinθ交于O,A两点.
(Ⅰ)求直线OA的斜率;
(Ⅱ)过O点作OA的垂线分别交两圆于点B,C,求|BC|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C1:ρ2-4ρcosθ+3=0,θ∈[0,2π],曲线C2:ρ=$\frac{3}{{4sin({\frac{π}{6}-θ})}}$,θ∈[0,2π].
(Ⅰ)求曲线C1的一个参数方程;
(Ⅱ)若曲线C1和曲线C2相交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,梯形ABEF中,AB∥EF,AF⊥BF,O,M分别是AB,FC的中点,矩形ABCD所在的平面与ABEF所在的平面互相垂直,且AB=2,AD=EF=1.
(1)证明:AF⊥平面CBF;
(2)证明:OM∥平面DAF;
(3)若二面角D-BC-F为60°,求直线EM与平面CBF所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示:三角形ABC是边长为2的等边三角形,PA⊥平面ABC,PA=3,D是BC的中点,
(1)求证:BC⊥平面PDA;
(2)求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个腰长为2的等腰直角三角形绕着斜边上的高所在直线旋转180°形成的封闭曲面所围成的图形的体积为$\frac{2\sqrt{2}π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某商场对品牌电视的日销售量(单位:台)进行最近100天的统计,统计结果如表:
日销售量1234
频数A40B5
频率$\frac{2}{5}$C$\frac{3}{20}$D
(1)求出表中A、B、C、D的值;
(2)①试对以上表中的销售x与频数Y的关系进行相关性检验,是否有95%把握认为x与Y之间具有线性相关关系,请说明理由;
②若以上表频率为概率,且每天的销售量相互独立,已知每台电视机的销售利润为200元,X表示该品牌电视机每天销售利润的和(单位:元),求X数学期望.
参考公式:
相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i}-n\overline{x}•\overline{y})}{\sqrt{(\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2})(\sum_{i=1}^{n}{y}^{2}-n{\overline{y}}^{2})}}$
参考数据:$\sqrt{190}$≈13.8,$\sum_{i=1}^{4}{x}_{i}{y}_{i}-4\overline{x}•\overline{y}$=-65,$\sum_{i=1}^{4}{x}_{i}^{2}-4{\overline{x}}^{2}$=5,$\sum_{i=1}^{4}{y}_{i}^{2}-4{\overline{y}}^{2}$=950,其中xi为日销售量,yi是xi所对应的频数.
相关性检验的临界值表
n-2 小概率
 0.050.01 
 1 0.9971.000 
 2 0.950 0.990
 3 0.8780.959

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知命题p:?x∈R,x2+2x+3=0,则¬p是?x∈R,x2+2x+3≠0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知{an},{bn}为两非零有理数列(即对任意的i∈N*,ai,bi均为有理数),{dn}为一无理数列(即对任意的i∈N*,di为无理数).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0对任意的n∈N*恒成立,试求{dn}的通项公式.
(2)若{dn2}为有理数列,试证明:对任意的n∈N*,(an+bndn-andn2)(1+dn2)=1+dn恒成立的充要条件为$\left\{\begin{array}{l}{a_n}=\frac{1}{1-d_n^4}\\{b_n}=\frac{1}{1+d_n^2}\end{array}$.
(3)已知sin2θ=$\frac{24}{25}$(0<θ<$\frac{π}{2}$),dn=$\root{3}{{tan(n•\frac{π}{2})+{{(-1)}^n}θ}}$,对任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立,试计算bn

查看答案和解析>>

同步练习册答案