精英家教网 > 高中数学 > 题目详情
2.如图所示:三角形ABC是边长为2的等边三角形,PA⊥平面ABC,PA=3,D是BC的中点,
(1)求证:BC⊥平面PDA;
(2)求二面角P-BC-A的大小.

分析 (1)推导出AD⊥BC,PA⊥BC,由此能证明BC⊥平面PAD.
(2)推导出AD⊥BC,PA⊥AB,PA⊥AC,PD⊥BC,从而∠PDA即是二面角P-BC-A的平面角,由此能求出二面角P-BC-A的大小.

解答 证明:(1)∵△ABC为等边三角形,D是BC的中点,
∴AD是△ABC的中线、角平分线和高线,∴AD⊥BC,
∵PA⊥平面ABC,∴PA⊥BC,
∵BC⊥PA,BC⊥AD,PA∩AD=A,
∴BC⊥平面PAD
解:(2)由(1)知AD⊥BC,
∵PA⊥平面ABC,∴PA⊥AB,PA⊥AC,
∵AB=AC,PB2=PA2+AB2,PC2=PA2+AC2
∴PB=PC,∴△PBC是等腰三角形,
∵D是BC的中点,∴PD是△PBC的中线、角平分线和高线,
∴PD⊥BC,∴∠PDA即是二面角P-BC-A的平面角,
AD=$\frac{\sqrt{3}}{2}$AB=$\frac{\sqrt{3}}{2}×2=\sqrt{3}$,PA=3,
tan∠PDA=$\frac{PA}{AD}$=$\frac{3}{\sqrt{3}}$=$\sqrt{3}$,∴∠PDA=60°,
∴二面角P-BC-A的大小为60°.

点评 本题考查线面垂直的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,A,B,C,D四点在同一圆上,AB∥CD,AD的延长线与BC的延长线交于E点.
(1)证明:EC=ED.
(2)延长CD到F,延长DC到G,连接EF、EG,使得EF=EG,证明:A,B,G,F四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=a(a>0),AC=2,AA1=1,点D在棱B1C1

(1)若点D为棱B1C1的中点(如图1),求证:AC1∥平面A1BD;
(2)若B1D:DC1=1:3(如图2),试问:当a为何值时,直线BB1与平面A1BD所成角的大小为30°?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在极坐标系下,点(2,$\frac{π}{6}$)到直线ρcos(θ-$\frac{2π}{3}$)=1的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=-cos2x-2tsinx+2t2-6t+2(x∈R),其中t∈R,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)当-1≤t≤1时,要使关于t的方程g(t)=kt有且仅有一个实根,求实数k的取值范围.
(3)问a取何值时,方程g(sinx)=a-5sinx在[0,2π)上有两解?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知|x-1|+|2-x|=1,则x的取值范围是[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知a=2${\;}^{\frac{4}{3}}}$,b=3${\;}^{\frac{2}{3}}}$,c=25${\;}^{\frac{1}{3}}}$,则a,b,c按从小到大的顺序排列为b<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-a|+|x+1|
(1)若a=2,求函数f(x)的最小值;
(2)如果关于x的不等式f(x)<2的解集不是空集,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线a、b是空间一组异面直线,长度确定的线段AB在直线a上滑动,长度确定的线段CD在直线b上滑动,△ACD的面积记为S,四面体ABCD的体积记为V,则(  )
A.S为常数,V不确定B.S不确定,V为常数C.S、V均为常数D.S、V均不确定

查看答案和解析>>

同步练习册答案