分析 (1)取BC的中点E,利用面面平行的性质定理进行证明即可.
(2)建立空间坐标系,求出平面的法向量,利用向量法建立线面角之间的方程关系进行求解即可.
解答 (1)证明:取BC的中点E,连接AE,C1E,
∵D为棱B1C1的中点![]()
∴在直三棱柱A1B1C1-ABC中,AE∥A1D,
四边形BEC1D为平行四边形,
则EC1∥BD,
∵BD∩A1D=D,
∴平面A1DB∥平面AC1E,
∵AC1?平面AC1E,
∴AC1∥平面A1BD.
(2)∵AB⊥AC,AB=a(a>0),AC=2,AA1=1,
∴建立以A为坐标原点,AB,AC,AA1分别为x,y,z轴的空间直角坐标系如图:
则A(0,0,0),B(a,0,0),C(0,2,0),A1(0,0,1),B1(a,0,1),
C1(0,2,1)
∵B1D:DC1=1:3,
∴B1D=$\frac{1}{4}$B1C1,
过D作DH⊥B1A1,![]()
则DH=$\frac{1}{4}$A1C1=$\frac{1}{4}×2$=$\frac{1}{2}$,B1H=$\frac{1}{4}$B1A1=$\frac{1}{4}$a,即HA1=a-$\frac{1}{4}$a=$\frac{3}{4}$a,
即D($\frac{3}{4}$a,$\frac{1}{2}$,1),
则$\overrightarrow{{A}_{1}B}$=(a,0,-1),$\overrightarrow{{A}_{1}D}$=($\frac{3}{4}$a,$\frac{1}{2}$,0),
设平面A1BD的法向量为$\overrightarrow{m}$=(x,y,z),
由$\overrightarrow{m}$•$\overrightarrow{{A}_{1}B}$=ax-z=0,$\overrightarrow{m}$•$\overrightarrow{{A}_{1}D}$=$\frac{3}{4}$ax+$\frac{1}{2}$y=0,
令x=1,则z=a,y=-$\frac{3}{2}$a,即$\overrightarrow{m}$=(1,-$\frac{3}{2}$a,a),
$\overrightarrow{B{B}_{1}}$=(0,0,1),
∵直线BB1与平面A1BD所成角的大小为30°,
∴sin30°=|cos<$\overrightarrow{m}$,$\overrightarrow{B{B}_{1}}$>|=|$\frac{\overrightarrow{m}•\overrightarrow{B{B}_{1}}}{|\overrightarrow{m}||\overrightarrow{B{B}_{1}}|}$|=$\frac{a}{\sqrt{1+{a}^{2}+(-\frac{3}{2}a)^{2}}}$=$\frac{1}{2}$,
即$\frac{3}{4}$a2=1,a2=$\frac{4}{3}$,则a=$\sqrt{\frac{4}{3}}$=$\frac{2\sqrt{3}}{3}$.
即当a=$\frac{2\sqrt{3}}{3}$时,直线BB1与平面A1BD所成角的大小为30°.
点评 本题主要考查线面平行的判定以及线面角的应用,根据面面平行的判定定理证明线面平行,以及建立空间坐标系,求出平面的法向量,利用向量法建立线面角的关系是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 时间代号t | 1 | 2 | 3 | 4 | 5 |
| 储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.135 9 | B. | 0.135 8 | C. | 0.271 8 | D. | 0.271 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com