精英家教网 > 高中数学 > 题目详情
13.如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=a(a>0),AC=2,AA1=1,点D在棱B1C1

(1)若点D为棱B1C1的中点(如图1),求证:AC1∥平面A1BD;
(2)若B1D:DC1=1:3(如图2),试问:当a为何值时,直线BB1与平面A1BD所成角的大小为30°?

分析 (1)取BC的中点E,利用面面平行的性质定理进行证明即可.
(2)建立空间坐标系,求出平面的法向量,利用向量法建立线面角之间的方程关系进行求解即可.

解答 (1)证明:取BC的中点E,连接AE,C1E,
∵D为棱B1C1的中点
∴在直三棱柱A1B1C1-ABC中,AE∥A1D,
四边形BEC1D为平行四边形,
则EC1∥BD,
∵BD∩A1D=D,
∴平面A1DB∥平面AC1E,
∵AC1?平面AC1E,
∴AC1∥平面A1BD.
(2)∵AB⊥AC,AB=a(a>0),AC=2,AA1=1,
∴建立以A为坐标原点,AB,AC,AA1分别为x,y,z轴的空间直角坐标系如图:
则A(0,0,0),B(a,0,0),C(0,2,0),A1(0,0,1),B1(a,0,1),
C1(0,2,1)
∵B1D:DC1=1:3,
∴B1D=$\frac{1}{4}$B1C1
过D作DH⊥B1A1
则DH=$\frac{1}{4}$A1C1=$\frac{1}{4}×2$=$\frac{1}{2}$,B1H=$\frac{1}{4}$B1A1=$\frac{1}{4}$a,即HA1=a-$\frac{1}{4}$a=$\frac{3}{4}$a,
即D($\frac{3}{4}$a,$\frac{1}{2}$,1),
则$\overrightarrow{{A}_{1}B}$=(a,0,-1),$\overrightarrow{{A}_{1}D}$=($\frac{3}{4}$a,$\frac{1}{2}$,0),
设平面A1BD的法向量为$\overrightarrow{m}$=(x,y,z),
由$\overrightarrow{m}$•$\overrightarrow{{A}_{1}B}$=ax-z=0,$\overrightarrow{m}$•$\overrightarrow{{A}_{1}D}$=$\frac{3}{4}$ax+$\frac{1}{2}$y=0,
令x=1,则z=a,y=-$\frac{3}{2}$a,即$\overrightarrow{m}$=(1,-$\frac{3}{2}$a,a),
$\overrightarrow{B{B}_{1}}$=(0,0,1),
∵直线BB1与平面A1BD所成角的大小为30°,
∴sin30°=|cos<$\overrightarrow{m}$,$\overrightarrow{B{B}_{1}}$>|=|$\frac{\overrightarrow{m}•\overrightarrow{B{B}_{1}}}{|\overrightarrow{m}||\overrightarrow{B{B}_{1}}|}$|=$\frac{a}{\sqrt{1+{a}^{2}+(-\frac{3}{2}a)^{2}}}$=$\frac{1}{2}$,
即$\frac{3}{4}$a2=1,a2=$\frac{4}{3}$,则a=$\sqrt{\frac{4}{3}}$=$\frac{2\sqrt{3}}{3}$.
即当a=$\frac{2\sqrt{3}}{3}$时,直线BB1与平面A1BD所成角的大小为30°.

点评 本题主要考查线面平行的判定以及线面角的应用,根据面面平行的判定定理证明线面平行,以及建立空间坐标系,求出平面的法向量,利用向量法建立线面角的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)是周期为2的偶函数,且当x∈[0,1]时,f(x)=x2,函数g(x)=kx(k>0),若不等式f(x)≤g(x)的解集是[0,a]∪[b,c]∪[d,+∞)(d>c>b>a>0),则正数k的取值范围是[$\frac{1}{5}$,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人名币储蓄存款(年底余额)如表
年份20112012201320142015
时间代号t12345
储蓄存款y(千亿元)567810
(Ⅰ)求y关于t的回归方程$\widehaty=\widehatbt+\widehata$;
(Ⅱ)用所求回归直线方程预测该地区2016年(t=6)的人民币储蓄存款.
附:回归方程$\widehaty=\widehatbt+\widehata$,$\widehatb=\frac{{\sum_{i=1}^n{{t_i}{y_i}-n\overline t\overline y}}}{{\sum_{i=1}^n{t_i^2-n{{\overline t}^2}}}}$,$\widehata=\overline y-\widehatb\overline t$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数$f(x)=|x|+\frac{1}{|x|}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知四棱锥P-ABCD如图所示,其中四边形ABCD是等腰梯形,且∠ADC+∠DAB=180°,AB=2AD=2DC=2BC=4,PA=PC,平面PAC⊥平面ABCD,点P到平面ABCD的距离为$\sqrt{3}$.
(Ⅰ)求证:PA⊥BC;
(Ⅱ)求直线BP与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C1:ρ2-4ρcosθ+3=0,θ∈[0,2π],曲线C2:ρ=$\frac{3}{{4sin({\frac{π}{6}-θ})}}$,θ∈[0,2π].
(Ⅰ)求曲线C1的一个参数方程;
(Ⅱ)若曲线C1和曲线C2相交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知点C在圆O直径BE的延长线上,CA切圆O于A点,CD分别交AE、AB于点F、D,∠ADF=45°.
(1)求证:CD为∠ACB的平分线;
(2)若AB=AC,求$\frac{AC}{BC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示:三角形ABC是边长为2的等边三角形,PA⊥平面ABC,PA=3,D是BC的中点,
(1)求证:BC⊥平面PDA;
(2)求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.682 6.若μ=4,σ=1,则P(5<X<6)=(  )
A.0.135 9B.0.135 8C.0.271 8D.0.271 6

查看答案和解析>>

同步练习册答案