精英家教网 > 高中数学 > 题目详情
5.已知点C在圆O直径BE的延长线上,CA切圆O于A点,CD分别交AE、AB于点F、D,∠ADF=45°.
(1)求证:CD为∠ACB的平分线;
(2)若AB=AC,求$\frac{AC}{BC}$的值.

分析 (1)判断出△ADF为等腰直角三角形,根据弦切角定理,三角形外角定理,及圆周角定理的推论,即可得出结论;
(2)若AB=AC,结合(1)的结论,我们可得△ABC三个角分别为30°,30°,120°,解三角形,即可得到$\frac{AC}{BC}$的值.

解答 (1)证明:∵CA切圆O于A点,
∴由弦切角定理,可得∠CAE=∠B
∵BE为圆O的直径
∴∠DAF=90°
∵∠ADF=45°,
∴∠ADF=∠AFD
∴∠ACD+∠CAE=∠B+∠BCD
∴∠ACD=∠BCD,
∴CD为∠ACB的角平分线;
(2)解:若AB=AC,则∠CAE=∠B=∠ACB=30°
则$\frac{AC}{BC}$=$\frac{\sqrt{3}}{3}$.

点评 本题考查的知识点是圆周角定理,弦切角定理,三角形外角定理,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.利用“二分法”判断方程①3x2-lnx=0;②x+lnx=0;③x3-3x2+3x-4=0;④x+$\frac{1}{x}$=2中在区间(0,1)内有实数解,则方程的序号为②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,EP交圆于E,C两点,PD切圆于D,G为CE上一点且PG=PD,连接DG并延长交圆于点A,作弦AB垂直EP,垂足为F.
(1)求证:BD⊥AD;
(2)若AC=BD,AB=6,求弦DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=a(a>0),AC=2,AA1=1,点D在棱B1C1

(1)若点D为棱B1C1的中点(如图1),求证:AC1∥平面A1BD;
(2)若B1D:DC1=1:3(如图2),试问:当a为何值时,直线BB1与平面A1BD所成角的大小为30°?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin($\frac{π}{3}$-θ)=$\frac{\sqrt{3}}{2}$,曲线C的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α为参数,0≤α≤π)
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)设P为曲线C上的动点,求点P到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在极坐标系下,点(2,$\frac{π}{6}$)到直线ρcos(θ-$\frac{2π}{3}$)=1的距离为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=-cos2x-2tsinx+2t2-6t+2(x∈R),其中t∈R,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)当-1≤t≤1时,要使关于t的方程g(t)=kt有且仅有一个实根,求实数k的取值范围.
(3)问a取何值时,方程g(sinx)=a-5sinx在[0,2π)上有两解?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知a=2${\;}^{\frac{4}{3}}}$,b=3${\;}^{\frac{2}{3}}}$,c=25${\;}^{\frac{1}{3}}}$,则a,b,c按从小到大的顺序排列为b<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.$n=\overline{abc}$表示一个三位数,记f(n)=(a+b+c)+(a×b+b×c+a×c)+a×b×c,如f(123)=(1+2+3)+(1×2+1×3+2×3)+1×2×3=23,则满足f(n)=n的三位数共有9个.

查看答案和解析>>

同步练习册答案