精英家教网 > 高中数学 > 题目详情
12.直线a、b是空间一组异面直线,长度确定的线段AB在直线a上滑动,长度确定的线段CD在直线b上滑动,△ACD的面积记为S,四面体ABCD的体积记为V,则(  )
A.S为常数,V不确定B.S不确定,V为常数C.S、V均为常数D.S、V均不确定

分析 根据条件作出对应的图形,利用异面直线的性质以及四面体的体积进行判断即可.

解答 解:CD长度固定,但A到CD的距离是变化的,∴S不确定;
取四面体的边AC、AD、BC、BD的中点,得到一个中间截面,可知该截面面积是个定值,
a、b到该截面的距离也是定值,∴V是常数,
故选:B

点评 本题主要考查空间异面直线以及空间四面体的体积的判断,是个开放性的题目,根据条件作出图象利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图所示:三角形ABC是边长为2的等边三角形,PA⊥平面ABC,PA=3,D是BC的中点,
(1)求证:BC⊥平面PDA;
(2)求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.682 6.若μ=4,σ=1,则P(5<X<6)=(  )
A.0.135 9B.0.135 8C.0.271 8D.0.271 6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x),x∈R是有界函数,即存在M>0使得|f(x)|≤M恒成立.
(1)F(x)=f(x+1)-f(x)是有界函数,则f(x),x∈R是否是有界函数?说明理由;
(2)判断f1(x)=$\frac{4x}{{{x^2}-2x+3}}$,f2(x)=9x-2•3x是否是有界函数?
(3)有界函数f(x),x∈R满足f(x+$\frac{1}{4}}$)+f(x+$\frac{1}{3}}$)=f(x)+f(x+$\frac{7}{12}}$),f(x),x∈R是否是周期函数,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.复数z=1+4i(i为虚数单位),则|2z+$\overline z}$|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知{an},{bn}为两非零有理数列(即对任意的i∈N*,ai,bi均为有理数),{dn}为一无理数列(即对任意的i∈N*,di为无理数).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0对任意的n∈N*恒成立,试求{dn}的通项公式.
(2)若{dn2}为有理数列,试证明:对任意的n∈N*,(an+bndn-andn2)(1+dn2)=1+dn恒成立的充要条件为$\left\{\begin{array}{l}{a_n}=\frac{1}{1-d_n^4}\\{b_n}=\frac{1}{1+d_n^2}\end{array}$.
(3)已知sin2θ=$\frac{24}{25}$(0<θ<$\frac{π}{2}$),dn=$\root{3}{{tan(n•\frac{π}{2})+{{(-1)}^n}θ}}$,对任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立,试计算bn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列{an}满足:a1=1,且对任意的n∈N*都有:an+1=an+n+1,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{2016}}$=(  )
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.$\frac{2016}{2017}$D.$\frac{4032}{2017}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求证:关于x的方程ax2+bx+c=0有一个根为2的充要条件是4a+2b+c=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图,如图所示,则甲乙的中位数分别为(  )
A.17和17B.17和17.3C.16.8和17D.169和171.5

查看答案和解析>>

同步练习册答案