| A. | $\frac{2\sqrt{2}}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{\sqrt{2}}{3}$ |
分析 根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,可知|OB|=$\frac{1}{2}$|AF|,推断出|OB|=|BF|,进而求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.
解答
解:设抛物线C:y2=8x的准线为l:x=-2
直线y=k(x+2)恒过定点P(-2,0)
如图过A、B分别作AM⊥l于M,BN⊥l于N,
由|FA|=2|FB|,则|AM|=2|BN|,
点B为AP的中点、连接OB,
则|OB|=$\frac{1}{2}$|AF|,
又∵|FA|=2|FB|,
∴|OB|=|BF|,点B的横坐标为1,
∵k>0,
∴点B的坐标为(1,2$\sqrt{2}$),
∴k=$\frac{2\sqrt{2}-0}{1-(-2)}$=$\frac{2\sqrt{2}}{3}$.
故选:A.
点评 本题考查了抛物线的标准方程及其性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{15}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{7}$ | D. | $\sqrt{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪(2,+∞) | B. | (-2,2) | C. | (-∞,-$\sqrt{2}$)∪($\sqrt{2}$,+∞) | D. | (-$\sqrt{2}$,$\sqrt{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 经济损失不超过 4000元 | 经济损失超过 4000元 | 合计 | |
| 捐款超过 500元 | a=30 | b | |
| 捐款不超 过500元 | c | d=6 | |
| 合计 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com