精英家教网 > 高中数学 > 题目详情
18.设函数f(x)=x-lnx.
(Ⅰ)求函数的单调区间;
(Ⅱ)若不等式$\frac{lnx}{x}$≤1-$\frac{a}{x}$恒成立,求实数a的取值范围.

分析 (Ⅰ)求出f′(x),在定义域内解不等式f′(x)<0,f′(x)>0即可得到单调区间;
(Ⅱ)问题转化为a≤x-lnx对任意x>0恒成立,根据函数的单调性求出a的范围即可.

解答 解:(Ⅰ)f(x)=x-lnx,(x>0),
f′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$,
令f′(x)>0,解得:x>1,
令f′(x)<0,解得:0<x<1,
∴f(x)在(0,1)递减,在(1,+∞)递增;
(Ⅱ)不等式$\frac{lnx}{x}$≤1-$\frac{a}{x}$恒成立,
即a≤x-lnx对任意x>0恒成立,
由(Ⅰ)得:f(x)=x-lnx在x=1处取得最小值1,
∴a≤1.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在等腰直角三角形ABC中,∠C=90°,AC=1,且$\overrightarrow{BC}$=-4$\overrightarrow{CD}$,则$\overrightarrow{AD}$$•\overrightarrow{AB}$=$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列各数:$\frac{1}{\sqrt{2}-1}$,$\frac{1}{\sqrt{3}-\sqrt{2}}$,$\frac{2}{\sqrt{5}-\sqrt{3}}$,$\frac{1}{\sqrt{6}-\sqrt{5}}$中最大的数是$\frac{1}{\sqrt{6}-\sqrt{5}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知BC是圆x2+y2=25的动弦,且|BC|=6,则BC的中点的轨迹方程是(  )
A.x2+y2=1B.x2+y2=9C.x2+y2=16D.x2+y2=4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=lnx+\frac{a}{{2{x^2}}}(a>0)$.
(1)试判断f(x)在定义域内的单调性;
(2)若f(x)在区间[1,e2]上的最小值为2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设抛物线C:y2=2px的焦点F是圆M:x2+y2-4x-21=0的圆心,则圆M截C的准线所得弦长为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线C:y2=8x与直线y=k(x+2)(k>0)相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则k=(  )
A.$\frac{2\sqrt{2}}{3}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)=x3+3ax2+3(a+2)x+1有极大值和极小值,则a的取值范围是   (  )
A.-1<a<2B.a>2或a<-1C.a≥2或a≤-1D.a>1或a<-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=eax,g(x)=-x2+bx+c(a,b,c∈R),且曲线y=f(x)与曲线y=g(x)在它们的交点(0,c)处具有公共切线.设h(x)=f(x)-g(x).
(Ⅰ)求c的值,及a,b的关系式;
(Ⅱ)求函数h(x)的单调区间;
(Ⅲ)设a≥0,若对于任意x1,x2∈[0,1],都有|h(x1)-h(x2)|≤e-1,求a的取值范围.

查看答案和解析>>

同步练习册答案