分析 先分母有理化,再比较大小即可.
解答 解:$\frac{1}{\sqrt{2}-1}$=$\sqrt{2}$+1,$\frac{1}{\sqrt{3}-\sqrt{2}}$=$\sqrt{3}$+$\sqrt{2}$,$\frac{2}{\sqrt{5}-\sqrt{3}}$=$\sqrt{5}$+$\sqrt{3}$,$\frac{1}{\sqrt{6}-\sqrt{5}}$=$\sqrt{6}$+$\sqrt{5}$,
∵$\sqrt{2}$+1<$\sqrt{3}+\sqrt{2}$<$\sqrt{5}$$+\sqrt{3}$<$\sqrt{6}$+$\sqrt{5}$
∴最大的是$\frac{1}{\sqrt{6}-\sqrt{5}}$.
故答案为:$\frac{1}{\sqrt{6}-\sqrt{5}}$.
点评 本题考查了分式的化简和大小比较,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$A${\;}_{5}^{5}$ | B. | A${\;}_{5}^{5}$ | C. | $\frac{1}{2}$A${\;}_{4}^{4}$ | D. | 2A${\;}_{4}^{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{15}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{7}$ | D. | $\sqrt{11}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 钝角三角形 | ||
| C. | 直角三角形 | D. | 直角三角形或钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|-1<x<2} | B. | {x|x>-1} | C. | {x|-1<x<1} | D. | {x|1<x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com