精英家教网 > 高中数学 > 题目详情
已知定点M(-1,0),N(1,0),P是椭圆
x2
4
+
y2
3
=1上动点,则
1
|PM|
+
4
|PN|
的最小值为(  )
A、2
B、
9
4
C、3
D、3+2
2
考点:椭圆的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由椭圆方程求出椭圆焦点坐标,可知M,N为椭圆的两个焦点,由椭圆定义得到|PM|+|PN|=2a=4,把
1
|PM|
+
4
|PN|
化为
1
4
1
|PM|
+
4
|PN|
)(|PM|+|PN|),展开后利用基本不等式求得最小值.
解答: 解:由
x2
4
+
y2
3
=1,得a2=4,b2=3,
∴c2=a2-b2=1,c=1
则M(-1,0),N(1,0)是椭圆的焦点,
则有|PM|+|PN|=2a=4,
1
|PM|
+
4
|PN|
=
1
4
1
|PM|
+
4
|PN|
)(|PM|+|PN|)
=
1
4
(5+
|PN|
|PM|
+
4|PM|
|PN|
)≥
1
4
(5+4)=
9
4

故选:B
点评:本题考查了椭圆的定义,考查了椭圆的简单集合性质,训练了利用基本不等式求最值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
lnx+k
ex
(其中k∈R),f′(x)为f(x)的导数.
(1)求证:不论k取何值,曲线y=f(x)在点(e,f(e))处的切线不过点(e+1,0);
(2)若f′(1)=0,证明:对任意x>0,f′(x)<
e-x+1
x2+x
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2x+2
3
sinxcosx(x∈R).
(1)当x∈[0,
π
2
]时,求函数f(x)的单调递增区间;
(2)设△ABC的内角A,B,C的对边分别为a,b,c,
m
=(1,sinA),
n
=(2,sinB),若
m
n
,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是△ABC所在平面内的点,且
PA
+2
PB
+3
PC
=3
AC

(1)求证:点P在直线AB上;
(2)求△PAC与△PBC的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=-sinx(x∈R)的单调增区间为(  )
A、[-
π
2
+2kπ,
π
2
+2kπ](k∈Z)
B、[
π
2
+2kπ,
2
+2kπ](k∈Z)
C、[2kπ,π+2kπ](k∈Z)
D、[-π+2kπ,2kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,2a1+3a2=11,2a3=a2+a6-4,其前n项和为Sn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=an•2n-1,求{bn}的前n项和Tn
(理)(Ⅲ)若数列{cn}满足cn=
1
Sn+1-1
,且{cn}前n项和为Ln,求证:Ln
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个顶点分别为A(x1,y1),B(x2,y2),C(x3,y3),若G是△ABC的重心,则G点坐标为
 
GA
+
GB
+
GC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的前n项和为Sn,a1+a3+a5-(a2+a4)=8,a12+a32+a52+(a22+a42)=12,则S5=(  )
A、-
3
2
B、
3
2
C、
3
4
D、-
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2
x-1
x+1
的值域为
 

查看答案和解析>>

同步练习册答案