精英家教网 > 高中数学 > 题目详情

设函数f(x)=lnx﹣ax,a∈R.

(1)当x=1时,函数f(x)取得极值,求a的值;

(2)当a>0时,求函数f(x)在区间[1,2]的最大值;

(3)当a=﹣1时,关于x的方程2mf(x)=x2(m>0)有唯一实数解,求实数m的值.

解:(1)f(x)的定义域为(0,+∞),所以f′(x)=﹣a=.    

因为当x=1时,函数f(x)取得极值,所以f′(1)=1﹣a=0,所以a=1.

经检验,a=1符合题意.(不检验不扣分)      

(2)f′(x)=﹣a=,x>0.

令f′(x)=0得x=.因为x∈(0,)时,f′(x)>0,x∈(,+∞)时,f′(x)<0,

所以f(x)在(0,)递增,在(,+∞)递减,

①当0<≤1,即a≥1时,f(x)在(1,2)上递减,所以x=1时,f(x)取最大值f(1)=﹣a;

②当1<<2,即<a<1时,f(x)在(1,)上递增,在( ,2)上递减,

所以x=时,f(x)取最大值f()=﹣lna﹣1;

③当≥2,即0<a≤时,f(x)在(1,2)上递增,所以x=2时,f(x)取最大值f(2)=ln2﹣2a.

综上,①当0<a≤时,f(x)最大值为ln2﹣2a;②当<a<1时,f(x)最大值为﹣lna﹣1;

③当a≥1时,f(x)最大值为﹣a.      

  (3)因为方程2mf(x)=x2有唯一实数解,

所以x2﹣2mlnx﹣2mx=0有唯一实数解,

设g(x)=x2﹣2mlnx﹣2mx,

则g′(x)=,令g′(x)=0,x2﹣mx﹣m=0.

因为m>0,x>0,所以x1=<0(舍去),x2=

当x∈(0,x2)时,g′(x)<0,g(x)在(0,x2)上单调递减,

当x∈(x2,+∞)时,g′(x)>0,g(x)在(x2,+∞)单调递增,

当x=x2时,g(x)取最小值g(x2).                 

所以2mlnx2+mx2﹣m=0,因为m>0,所以2lnx2+x2﹣1=0(*),

设函数h(x)=2lnx+x﹣1,因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.

因为h(1)=0,所以方程(*)的解为x2=1,即=1,

解得m=.                        

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2
(I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于ln
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)设函数f(x)=ln(1+x)-
2x
x+2
,证明:当x>0时,f(x)>0;
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为P.证明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)设函数f(x)=ln(x2-x-6)的定义域为集合A,集合B={x|
5x+1
>1}.请你写出一个一元二次不等式,使它的解集为A∩B,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2(a>
2
)

(1)若a=
3
2
,解关于x不等式f(e
x
-
3
2
)<ln2+
1
4

(2)证明:关于x的方程2x2+2ax+1=0有两相异解,且f(m)和f(n)分别是函数f(x)的极小值和极大值(m,n为该方程两根,且m>n).

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+2x2
(1)若当x=-1时,f(x)取得极值,求a的值;
(2)在(1)的条件下,方程ln(x+a)+2x2-m=0恰好有三个零点,求m的取值范围;
(3)当0<a<1时,解不等式f(2x-1)<lna.

查看答案和解析>>

同步练习册答案