分析 (Ⅰ)先根据等比数列的性质可求出a2的值,然后根据S2n=3(a1+a3+…+a2n-1)中令n=1可求出首项a1,从而求出公比,即可求出an的通项公式,
(Ⅱ)先根据等比数列的求和公式求出Sn,再求出bn=nSn,根据分组求和和错位相减法求和即可.
解答 解:(Ⅰ)利用等比数列的性质可得,a1a2a3=a23=8 即a2=2
∵S2n=3(a1+a3+…+a2n-1)
∴n=1时有,S2=a1+a2=3a1从而可得a1=1,q=2,
∴an=2n-1,
(Ⅱ)由(Ⅰ)可得Sn=$\frac{1-{2}^{n}}{1-2}$=-1+2n,
∴bn=nSn=-n+n•2n,
∴Tn=-(1+2+3+…+n)+1×2+2×22+3×23+…+n•2n,
设An=1×2+2×22+3×23+…+n•2n,
∴2An=1×22+2×23+…+(n-1)•2n+n•2n+1,
两式相减可得-An=2+22+23+…+2n-n•2n+1=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1=-2+2n+1-n•2n+1=-2+(1-n)2n+1,
∴An=2+(n-1)2n+1,
∴Tn=-$\frac{n(n+1)}{2}$+2+(n-1)2n+1.
点评 本题主要考查了等比数列的前n项和以及错位相减法求和,以及等比数列的性质和通项公式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5π}{12}$ | B. | $\frac{π}{2}$ | C. | $\frac{7π}{12}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递增 | B. | 在区间[$\frac{π}{12}$,$\frac{7π}{12}$]上单调递减 | ||
| C. | 在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递增 | D. | 在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上单调递减 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=±$\frac{{\sqrt{10}}}{2}x$ | B. | y=±$\frac{{\sqrt{13}}}{2}x$ | C. | y=±$\frac{{\sqrt{15}}}{2}x$ | D. | y=±$\frac{{\sqrt{19}}}{2}x$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 都大于2 | B. | 至少有一个不小于2 | ||
| C. | 至少有一个大于2 | D. | 至少有一个不大于2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com