精英家教网 > 高中数学 > 题目详情
4.已知{an}是递增等差数列,a1=2,且a1,a2,a5成等比数列,则此数列的公差d=4.

分析 设出公差,利用已知条件列出方程求解即可.

解答 解:设等差数列的公差为d,依题意,2,2+d,2+4d成等比数列,∴(2+d)2=2(2+4d),解得d=0(舍去)或d=4.
故答案为:4.

点评 本题考查等差数列以及等比数列的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),其部分图象如下图所示,且直线y=A与曲线y=f(x)(-$\frac{π}{24}$$≤x≤\frac{11π}{24}$)所围成的封闭图形的面积为π,则f($\frac{π}{8}$)+f($\frac{2π}{8}$)+f($\frac{3π}{8}$)+…+f($\frac{2015π}{8})$的值为(  )
A.-$\sqrt{3}$B.-1-$\sqrt{3}$C.$\sqrt{3}$D.-1+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)的定义域与值域均为(0,+∞),且f(x)为单调函数,对任意正实数均满足f(f(x)+2)=$\frac{1}{f(x)}$,则f($\frac{1}{2}$)=$-\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C的极坐标方程为ρ2=$\frac{6}{2co{s}^{2}θ+3si{n}^{2}θ}$,以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系.
(Ⅰ)求曲线C的普通方程;
(Ⅱ)P,Q是曲线C上的两个点,当OP⊥OQ时,求$\frac{1}{|OP{|}^{2}}$+$\frac{1}{|OQ{|}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,y),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则y=(  )
A.-1B.1C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.甲、乙两人在2015年1月至5月的纯收入(单位:千元)的数据如下表:
月份x12345
甲的纯收入y2.93.33.64.44.8
乙的纯收入z2.83.43.84.55.5
(1)由表中数据直观分析,甲、乙两人中谁的纯收入较稳定?
(2)求y关于x的线性回归方程,并预测甲在6月份的纯收入;
(3)现从乙这5个月的纯收入中,随机抽取两个月,求恰有1个月的纯收入在区间(3,3.5)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知偶函数f(x),当x∈[0,2)时,f(x)=2sinx,当x∈[2,+∞)时,f(x)=log2x,则$f({-\frac{π}{3}})+f(4)$=(  )
A.$\sqrt{3}+2$B.1C.3D.$-\sqrt{3}+2$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=1-3sin2x的最小正周期为π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示:矩形ABCD与正方形ADEF所在的平面互相垂直,AB=2AD=4,点P为AB的中点.
(1)求证:BE∥平面PDF.
(2)求点B到平面PDF的距离.

查看答案和解析>>

同步练习册答案