已知函数
,设![]()
(1)求
的单调区间;
(2)若以
图象上任意一点
为切点的切线的斜率
恒成立,求实数
的最小值;
(3)是否存在实数
,使得函数
的图象与
的图象恰好有四个不同的交点?若存在,求出
的取值范围,若不存在,说明理由。
科目:高中数学 来源: 题型:解答题
对于区间
上有意义的两个函数
如果有任意![]()
,均有
则称
与
在
上是接近的,否则称
与
在
上是非接近的.现有两个函数
与
给定区间
, 讨论
与
在给定区间
上是否是接近的.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
(a,b为常数)且方程f(x)-x+12=0有两个实根为x1="3," x2=4.
(1)求函数f(x)的解析式;
(2)设
,解关于x的不等式;
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
,当
时函数
取得一个极值,其中
.
(Ⅰ)求
与
的关系式;
(Ⅱ)求
的单调区间;
(Ⅲ)当
时,函数
的图象上任意一点的切线的斜率恒大于
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数f (x)的定义域为M,具有性质P:对任意x∈M,都有f (x)+f (x+2)≤2f (x+1).
(1)若M为实数集R,是否存在函数f (x)=ax (a>0且a≠1,x∈R) 具有性质P,并说明理由;
(2)若M为自然数集N,并满足对任意x∈M,都有f (x)∈N. 记d(x)=f (x+1)-f (x).
(ⅰ) 求证:对任意x∈M,都有d(x+1)≤d(x)且d(x)≥0;
(ⅱ) 求证:存在整数0≤c≤d(1)及无穷多个正整数n,满足d(n)=c.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com