精英家教网 > 高中数学 > 题目详情

已知函数(a,b为常数)且方程f(x)-x+12=0有两个实根为x1="3," x2=4.
(1)求函数f(x)的解析式;
(2)设,解关于x的不等式;

(1)
(2)①当            
②当       

解析试题分析:(1)将,得
                
(2)不等式即为
                         
①当            
②当       

考点:函数与方程,不等式的解集
点评:解决的关键是根据函数与方程根的问题来得到解析式,同时能借助于二次不等式的思想来求解集,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=,g(x)=2|x|+a.
(1)当a=0时,解不等式f(x)≥g(x);
(2)若存在x∈ R,使得f(x)≥g(x)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数,若不等式的解集为.(Ⅰ)求的值;(Ⅱ)若函数上的最小值为1,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,设
(1)求的单调区间;
(2)若以图象上任意一点为切点的切线的斜率 恒成立,求实数的最小值;
(3)是否存在实数,使得函数的图象与的图象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
⑴写出该函数的单调区间;
⑵若函数恰有3个不同零点,求实数的取值范围;
⑶若对所有的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,
OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交
于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.

(1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件
的点P的坐标;若不存在,请说明理由;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成
为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,其中.
(1)当时,求在曲线上一点处的切线方程;
(2)求函数的极值点。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(1+x)2-4a lnx(a∈N﹡).
(Ⅰ)若函数f(x)在(1,+∞)上是增函数,求a的值;
(Ⅱ)在(Ⅰ)的条件下,若关于x的方程f(x)=x2-x+b在区间[1,e]上恰有一个实根,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若解不等式
(Ⅱ)如果,,求实数的取值范围。

查看答案和解析>>

同步练习册答案