精英家教网 > 高中数学 > 题目详情
已知函数y=,使函数值为5的x的值是
[     ]
A.-2
B.2或-
C.2或-2
D.2或-2或-
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=cos(x+
π3
).
(1)用“五点法”作出它在长度为一个周期的闭区间上的简图;
(2)求使函数y取最大值和最小值时自变量x的集合,并求出它的最大值和最小值;
(3)指出该函数的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绍兴一模)已知函数f(x)=2asinxcosx-2bsin2x+b(a、b为常数,且a<0)的图象过点(0,
3
),且函数f(x)的最大值为2.
(1)求函数y=f(x)的解析式,并写出其单调递增区间;
(2)把函数y=f(x)的图象向右平移m(m>0)个单位,使所得的图象关于y轴对称,求实数m的最小值及平移后图象所对应的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知函数y=f(x),x∈D,如果对于定义域D内的任意实数x,对于给定的非零常数m,总存在非零常数T,恒有f(x+T)>m•f(x)成立,则称函数f(x)是D上的m级类增周期函数,周期为T.若恒有f(x+T)=m•f(x)成立,则称函数f(x)是D上的m级类周期函数,周期为T.
(1)已知函数f(x)=-x2+ax是[3,+∞)上的周期为1的2级类增周期函数,求实数a的取值范围;
(2)已知 T=1,y=f(x)是[0,+∞)上m级类周期函数,且y=f(x)是[0,+∞)上的单调递增函数,当x∈[0,1)时,f(x)=2x,求实数m的取值范围;
(3)下面两个问题可以任选一个问题作答,如果你选做了两个,我们将按照问题(Ⅰ)给你记分.
(Ⅰ)已知当x∈[0,4]时,函数f(x)=x2-4x,若f(x)是[0,+∞)上周期为4的m级类周期函数,且y=f(x)的值域为一个闭区间,求实数m的取值范围;
(Ⅱ)是否存在实数k,使函数f(x)=coskx是R上的周期为T的T级类周期函数,若存在,求出实数k和T的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:绍兴一模 题型:解答题

已知函数f(x)=2asinxcosx-2bsin2x+b(a、b为常数,且a<0)的图象过点(0,
3
),且函数f(x)的最大值为2.
(1)求函数y=f(x)的解析式,并写出其单调递增区间;
(2)把函数y=f(x)的图象向右平移m(m>0)个单位,使所得的图象关于y轴对称,求实数m的最小值及平移后图象所对应的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+有如下性质:如果常数a>0,那么该函数在(0,]上是减函数,在[,+∞)上是增函数.

(1)如果函数y=x+(x>0)的值域为[6,+∞),求b的值;

(2)研究函数y=x2+(常数c>0)在定义域内的单调性,并说明理由;

(3)对函数y=x+和y=x2+(常数a>0)作出推广,使它们都是你所推广的函数的特例,研究推广后的函数的单调性(只须写出结论,不必证明),并求函数f(x)=(x2+)n+(+x)n(n是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

查看答案和解析>>

同步练习册答案