精英家教网 > 高中数学 > 题目详情
5.用n(n≥2,n∈N*)表示$({1-\frac{1}{4}})$(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{n}^{2}}$)的值,并用数学归纳法证明.

分析 猜想其结论,按照数学归纳法的证题步骤:先证明n=1时命题成立,再假设当n=k时结论成立,去证明当n=k+1时,结论也成立,从而得出命题对任意n≥2,n∈N*,等式都成立.

解答 解:$({1-\frac{1}{4}})$(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{n+1}{2n}$,(n≥2,n∈N*
证明如下:(1)当n=2时,左边=1-$\frac{1}{4}$=$\frac{3}{4}$,右边=$\frac{2+1}{2×2}$=$\frac{3}{4}$,∴n=2时结论成立.
(2)假设当n=k(n≥2,n∈N*)时等式成立,即(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)•…•(1-$\frac{1}{{k}^{2}}$)=$\frac{k+1}{2k}$,
那么当n=k+1时,(1-$\frac{1}{4}$)(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)•…•(1-$\frac{1}{{k}^{2}}$)•(1-$\frac{1}{(k+1)^{2}}$)
=$\frac{k+1}{2k}$•(1-$\frac{1}{(k+1)^{2}}$)=$\frac{k+1}{2k}$-$\frac{1}{2k(k+1)}$=$\frac{k+2}{2(k+1)}$
∴当n=k+1时,等式也成立,
根据(1)和(2)知,对任意n≥2,n∈N*,$({1-\frac{1}{4}})$(1-$\frac{1}{9}$)(1-$\frac{1}{16}$)…(1-$\frac{1}{{n}^{2}}$)=$\frac{n+1}{2n}$成立

点评 本题考查数学归纳法,考查推理证明的能力,假设n=k(k∈N*)时命题成立,去证明则当n=k+1时,用上归纳假设是关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,在平面直角坐标系xoy中,已知椭圆$Γ:\frac{x^2}{4}+\frac{y^2}{b^2}=1({0<b<2})$和圆O:x2+y2=4,A为椭圆Γ的左顶点,B,C分别为椭圆Γ,圆O在轴上方的点,且$\overrightarrow{AB}=\frac{1}{2}\overrightarrow{AC}$..
(1)若$|{\overrightarrow{AC}}|=\frac{{8\sqrt{5}}}{5}$,求b的值;
(2)求椭圆Γ的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=log0.5x+log0.5(1-x).
(1)求f(x)的定义域;
(2)指出f(x)的单调递减区间(不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x2-1)=logm$\frac{{x}^{2}}{2-{x}^{2}}$(m>0,m≠1)
(1)判断f(x)的奇偶性;
(2)解关于x的方程f(x)=logm$\frac{1}{x}$.
(3)解关于x的不等式f(x)≥logm(3x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.水平放置的△ABC的斜二测直观图如图所示,若A1C1=2,△ABC的面积为2$\sqrt{2}$,则A1B1的长为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=f(x)+x+1是奇函数,且f(2)=3,则f(-2)=(  )
A.-7B.0C.-3D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知随机变量ξ的分布列为P(ξ=k)=$\frac{1}{3}$,k=1,2,3.则D(2ξ+3)等于(  )
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)={sin^2}x+2\sqrt{3}sinxcosx+3{cos^2}x-1$
(Ⅰ)求函数f(x)的单调减区间;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{6}$个单位长度得到函数g(x)的图象,求g(x)在区间$[{0,\frac{π}{2}}]$上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的函数f(x)满足f(x)=$\left\{\begin{array}{l}sin(\frac{π}{2}x)(x≤0)\\ f(x-2)(x>0)\end{array}$,则f(7)=(  )
A.-1B.0C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

同步练习册答案