分析 (Ⅰ)当a=1时,化简可得|x-1|+|x+1|≥4,从而讨论以去绝对值号,从而解得;
(Ⅱ)f(x)+f(-$\frac{1}{x}$)=|x-a|+|-$\frac{1}{x}-a$|=|x-a|+|$\frac{1}{x}$+a|≥|x+$\frac{1}{x}$|≥2.
解答 解:(Ⅰ)当a=1时,∵f(x)+f(-x)≥4,
∴|x-1|+|x+1|≥4,
当x≤-1时,-2x≥4,故x≤-2,
当-1<x<1时,2≥4,不成立,
当x≥1时,2x≥4,故x≥2;
综上所述,不等式f(x)+f(-x)≥4的解集为
(-∞,-2]∪[2,+∞);
(Ⅱ)证明:∵f(x)+f(-$\frac{1}{x}$)
=|x-a|+|-$\frac{1}{x}-a$|
=|x-a|+|$\frac{1}{x}$+a|
≥|x+$\frac{1}{x}$|≥2,
故f(x)+f(-$\frac{1}{x}$)≥2.
点评 本题考查了绝对值不等式与绝对值函数的应用,同时考查了分类讨论的思想应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{{\sqrt{6}+\sqrt{2}}}{2}$ | C. | $2+\sqrt{2}$ | D. | $\sqrt{2+\sqrt{2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[\frac{1}{4},\frac{1}{3})$ | B. | $(0,\frac{1}{2})$ | C. | $(0,\frac{1}{4}]$ | D. | $(\frac{1}{3},\frac{1}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=2{x^{\frac{1}{2}}}$ | B. | y=x3+x | C. | y=2x | D. | $y={x^{\frac{1}{2}}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com