精英家教网 > 高中数学 > 题目详情
7.设函数f(x)=|x-a|.
(Ⅰ)当a=1时,解不等式f(x)+f(-x)≥4;
(Ⅱ)证明:f(x)+f(-$\frac{1}{x}$)≥2.

分析 (Ⅰ)当a=1时,化简可得|x-1|+|x+1|≥4,从而讨论以去绝对值号,从而解得;
(Ⅱ)f(x)+f(-$\frac{1}{x}$)=|x-a|+|-$\frac{1}{x}-a$|=|x-a|+|$\frac{1}{x}$+a|≥|x+$\frac{1}{x}$|≥2.

解答 解:(Ⅰ)当a=1时,∵f(x)+f(-x)≥4,
∴|x-1|+|x+1|≥4,
当x≤-1时,-2x≥4,故x≤-2,
当-1<x<1时,2≥4,不成立,
当x≥1时,2x≥4,故x≥2;
综上所述,不等式f(x)+f(-x)≥4的解集为
(-∞,-2]∪[2,+∞);
(Ⅱ)证明:∵f(x)+f(-$\frac{1}{x}$)
=|x-a|+|-$\frac{1}{x}-a$|
=|x-a|+|$\frac{1}{x}$+a|
≥|x+$\frac{1}{x}$|≥2,
故f(x)+f(-$\frac{1}{x}$)≥2.

点评 本题考查了绝对值不等式与绝对值函数的应用,同时考查了分类讨论的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\frac{x+1}{x-1}$,则f(-x)=$\frac{x-1}{x+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.根据科学研究人的身高是具有遗传性的,唐三的身高为1.90m,他的爷爷的身高1.70m,他的父亲的身高为1.80m,他的儿子唐东的身高为1.90m,
(1)请根据以上数据画出父(x)子(y)身高的散点图;
(2)根据父(x)子(y)身高的数据,用最小二乘法求出y关于x的线性回归方程y=$\widehat{b}x$+$\stackrel{∧}{a}$;
(3)试根据(2)求出的线性回归方程,预测唐三的孙子唐雨浩将来的身高.
(用最小二乘法求线性回归方程系数公式$\widehat{b}=\frac{\sum_{i-1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i-1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:$\underset{lim}{n→∞}$(1-$\frac{1}{3}$+$\frac{1}{9}$-$\frac{1}{27}$+…+$\frac{{(-1)}^{n-1}}{{3}^{n-1}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,P是A1B上一动点,则AP+D1P的最小值为(  )
A.2B.$\frac{{\sqrt{6}+\sqrt{2}}}{2}$C.$2+\sqrt{2}$D.$\sqrt{2+\sqrt{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.“$\frac{ln3-5}{3}$≤k≤$\frac{ln2-1}{2}$”是“关于x的不等式lnx+x+1>x2+kx有且仅有2个正整数解”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)满足f(x+1)=f(x-1),且f(x)是偶函数,当x∈[0,1]时,f(x)=2x-1,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有4个零点,则实数k的取值范围是(  )
A.$[\frac{1}{4},\frac{1}{3})$B.$(0,\frac{1}{2})$C.$(0,\frac{1}{4}]$D.$(\frac{1}{3},\frac{1}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设二次函数f(x)=x2+ax+$\frac{{a}^{2}}{4}$+1(a∈R),求函数f(x)在[-1,1]上的最小值,g(a)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列函数是幂函数的是(  )
A.$y=2{x^{\frac{1}{2}}}$B.y=x3+xC.y=2xD.$y={x^{\frac{1}{2}}}$

查看答案和解析>>

同步练习册答案