10£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªµãA£¨-1£¬0£©¡¢B£¨1£¬0£©£¬¶¯µãCÂú×ãÌõ¼þ£º¡÷ABCµÄÖܳ¤Îª2+2$\sqrt{2}$£®¼Ç¶¯µãCµÄ¹ì¼£ÎªÇúÏßÁË£®
£¨¢ñ£©ÇóÇúÏßTµÄ·½³Ì£»
£¨¢ò£©ÒÑÖªµãM£¨ $\sqrt{2}$£¬0£©£¬N£¨0£¬1£©£¬ÊÇ·ñ´æÔÚ¾­¹ýµã£¨0£¬$\sqrt{2}$£©ÇÒбÂÊΪkµÄÖ±ÏßlÓëÇúÏßTÓÐÁ½¸ö²»Í¬µÄ½»µãPºÍQ£¬Ê¹µÃÏòÁ¿$\overrightarrow{OP}$+$\overrightarrow{OQ}$Óë$\overrightarrow{MN}$¹²Ïߣ¿Èç¹û´æÔÚ£¬Çó³ökµÄÖµ£»Èç¹û²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨I£©ÉèC£¨x£¬y£©£¬ÓÉ|AC|+|BC|+|AB|=2+2$\sqrt{2}$£¬|AB|=2£¬¿ÉµÃ|AC|+|BC||=2$\sqrt{2}$£¾2£¬ÀûÓÃÍÖÔ²µÄ¶¨Òå¿ÉÖª£º¶¯µãCµÄ¹ì¼£ÊÇÒÔA£¬BΪ½¹µã£¬³¤Ö᳤Ϊ2$\sqrt{2}$µÄÍÖÔ²£¬³ýÈ¥ÓëxÖáµÄÁ½¸ö½»µã£®
£¨II£©ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx+$\sqrt{2}$£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º$£¨\frac{1}{2}+{k}^{2}£©{x}^{2}$+2$\sqrt{2}$kx+1=0£¬ÓÉÓÚÖ±ÏßlÓëÍÖÔ²ÓÐÁ½¸ö²»Í¬µÄ½»µãPºÍQ£¬¿ÉµÃ¡÷£¾0£¬½âµÃkµÄȡֵ·¶Î§£®ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬ÏòÁ¿$\overrightarrow{OP}$+$\overrightarrow{OQ}$Óë$\overrightarrow{MN}$¹²Ïߣ¬¡à${x}_{1}+{x}_{2}=-\sqrt{2}£¨{y}_{1}+{y}_{2}£©$£¬°Ñ¸ùÓëϵÊýµÄ¹ØÏµ´úÈë½â³ö¼´¿ÉÅжϳö£®

½â´ð ½â£º£¨I£©ÉèC£¨x£¬y£©£¬¡ß|AC|+|BC|+|AB|=2+2$\sqrt{2}$£¬|AB|=2£¬
¡à|AC|+|BC||=2$\sqrt{2}$£¾2£¬
¡àÍÖÔ²µÄ¶¨Òå¿ÉÖª£º¶¯µãCµÄ¹ì¼£ÊÇÒÔA£¬BΪ½¹µã£¬³¤Ö᳤Ϊ2$\sqrt{2}$µÄÍÖÔ²£¬³ýÈ¥ÓëxÖáµÄÁ½¸ö½»µã£¬
¡àa=$\sqrt{2}$£¬c=1£¬¡àb2=a2-c2=1£®
¡àÇúÏßTµÄ·½³ÌΪ£º$\frac{{x}^{2}}{2}$+y2=1£¨y¡Ù0£©£®
£¨II£©ÉèÖ±ÏßlµÄ·½³ÌΪ£ºy=kx+$\sqrt{2}$£¬´úÈëÍÖÔ²·½³Ì¿ÉµÃ£º$£¨\frac{1}{2}+{k}^{2}£©{x}^{2}$+2$\sqrt{2}$kx+1=0£¬
¡ßÖ±ÏßlÓëÍÖÔ²ÓÐÁ½¸ö²»Í¬µÄ½»µãPºÍQ£¬
¡à¡÷=8k2-4$£¨\frac{1}{2}+{k}^{2}£©$£¾0£¬½âµÃ$k£¾\frac{\sqrt{2}}{2}$»òk$£¼-\frac{\sqrt{2}}{2}$£®
¡àÂú×ãÌõ¼þµÄkµÄȡֵ·¶Î§ÊÇ$£¨-¡Þ£¬-\frac{\sqrt{2}}{2}£©$¡È$£¨\frac{\sqrt{2}}{2}£¬+¡Þ£©$£®
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬¡à$\overrightarrow{OP}$+$\overrightarrow{OQ}$=£¨x1+x2£¬y1+y2£©£¬
ÓÖx1+x2=$\frac{-4\sqrt{2}k}{1+2{k}^{2}}$£¬y1+y2=k£¨x1+x2£©+2$\sqrt{2}$£¬$\overrightarrow{MN}$=$£¨-\sqrt{2}£¬1£©$£®
¡ßÏòÁ¿$\overrightarrow{OP}$+$\overrightarrow{OQ}$Óë$\overrightarrow{MN}$¹²Ïߣ¬¡à${x}_{1}+{x}_{2}=-\sqrt{2}£¨{y}_{1}+{y}_{2}£©$£¬
¡à$\frac{4k}{1+2{k}^{2}}=\frac{-4\sqrt{2}{k}^{2}}{1+2{k}^{2}}+2\sqrt{2}$£¬½âµÃk=$\frac{\sqrt{2}}{2}$£¬
¡ß$\frac{\sqrt{2}}{2}$∉$£¨-¡Þ£¬-\frac{\sqrt{2}}{2}£©$¡È$£¨\frac{\sqrt{2}}{2}£¬+¡Þ£©$£®
¡à²»´æÔÚkʹµÃÏòÁ¿$\overrightarrow{OP}$+$\overrightarrow{OQ}$Óë$\overrightarrow{MN}$¹²Ïߣ®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏཻÎÊÌâת»¯Îª·½³ÌÁªÁ¢¿ÉµÃ¡÷£¾0¼°Æä¸ùÓëϵÊýµÄ¹ØÏµ¡¢ÏòÁ¿¹²Ïß¶¨Àí£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-y¡Ý0}\\{x+y¡Ý0}\\{2x+y¡Ü1}\end{array}\right.$£¬¼Çz=4x+yµÄ×î´óֵΪa£¬Ôò${¡Ò}_{0}^{\frac{¦Ð}{a}}$£¨cos$\frac{x}{2}$-sin$\frac{x}{2}$£©2dx=$\frac{¦Ð}{3}-\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÇëÏÈÔĶÁ£ºÔÚµÈʽcos2x=2cos2x-1£¨x¡ÊR£©µÄÁ½±ßÇóµ¼£¬µÃ£¨cos2x£©¡ä=£¨2cos2x-1£©¡ä£¬ÓÉÇóµ¼·¨Ôò£¬µÃ£¨-sin2x£©•2=4cosx•£¨-sinx£©£¬»¯¼òµÃµÈʽ£ºsin2x=2cosx•sinx£¬ÀûÓÃÉÏÃæµÄÏë·¨£¨»òÆäËû·½·¨£©£¬ÇóºÍ$\sum_{k=1}^{n}$3k-1•k${C}_{n}^{k}$=n•4n-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÉèÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÒ»¸ö¶¥µãÓëÅ×ÎïÏßx2=4$\sqrt{3}$yµÄ½¹µãÖØºÏ£¬F1ÓëF2·Ö±ðÊǸÃÍÖÔ²µÄ×óÓÒ½¹µã£¬ÀëÐÄÂÊe=$\frac{1}{2}$£¬ÇÒ¹ýÍÖÔ²ÓÒ½¹µãF2µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚM¡¢NÁ½µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©Èô$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2£¬ÆäÖÐOÎª×ø±êÔ­µã£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨¢ó£©ÈôABÊÇÍÖÔ²C¾­¹ýÔ­µãOµÄÏÒ£¬ÇÒMN¡ÎAB£¬ÅжÏ$\frac{|AB{|}^{2}}{|MN|}$ÊÇ·ñΪ¶¨Öµ£¿ÈôÊǶ¨Öµ£¬ÇëÇó³ö£¬Èô²»ÊǶ¨Öµ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªM£¬NΪ˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ¶¥µã£¬P£¨ÒìÓÚµãM£¬N£©ÊÇË«ÇúÏßÉÏÈÎÒâÒ»µã£¬¼ÇÖ±ÏßPM£¬PNµÄбÂÊ·Ö±ðΪk1£¬k2£¬Ôòµ±e${\;}^{{k}_{1}}$${\;}^{{k}_{2}}$-1-ln£¨k1k2£©È¡×îСֵʱ£¬Ë«ÇúÏßÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$\sqrt{3}$C£®2D£®$\sqrt{2}$+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬Ö±Ïßl£ºx-y+2=0ÓëÒÔÓÒ½¹µãFΪԲÐÄ£¬ÍÖÔ²EµÄ³¤°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÏàÇУ®
£¨¢ñ£©ÇóÍÖÔ²EµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚÖ±Ïßl0£¬Ê¹µÃÖ±Ïßl0ºÍÍÖÔ²EÏàÇУ¬ÇеãÔÚµÚÒ»ÏóÏÞ£¬ÇÒ½ØÔ²FËùµÃÏÒ³¤Îª4£¿Èô´æÔÚ£¬ÊÔÇól0µÄÖ±Ïß·½³Ì£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÈý½ÇÐÎABCµÄÈý¸ö¶¥µã¶¼ÔÚÍÖÔ²$\frac{x^2}{a^2}+{y^2}=1£¨a£¾1£©$ÉÏ£¬ÆäÖÐA£¨0£¬1£©£®
£¨1£©ÈôµãB£¬C¹ØÓÚÔ­µã¶Ô³Æ£¬ÇÒÖ±ÏßAB£¬ACµÄбÂʳ˻ýΪ$-\frac{1}{4}$£¬ÇóÍÖÔ²·½³Ì£»
£¨2£©ÈôÈý½ÇÐÎABCÊÇÒÔAΪֱ½Ç¶¥µãµÄÖ±½ÇÈý½ÇÐΣ¬¸ÃÈý½ÇÐεÄÃæ»ýµÄ×î´óֵΪ$\frac{27}{8}$£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1B1C1ÖУ¬µ×ÃæÎªµÈ±ßÈý½ÇÐΣ¬DΪACµÄÖе㣬AA1=AB=6£®
£¨¢ñ£©ÇóÖ¤£ºÖ±ÏßAB1¡ÎÆ½ÃæBC1D£»
£¨¢ò£©ÇóÖ¤£ºÆ½ÃæBC1D¡ÍÆ½ÃæACC1A£»
£¨¢ó£©ÇóÈýÀâ×¶C-BC1DµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÔĶÁÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈôÊäÈëaµÄֵΪ¶þÏ$\sqrt{x}$+$\frac{1}{19{x}^{4}}$£©9Õ¹¿ªÊ½µÄ³£ÊýÏÔòÊä³öµÄkֵΪ9£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸