精英家教网 > 高中数学 > 题目详情
19.如图,在直三棱柱ABC-A1B1C1中,底面为等边三角形,D为AC的中点,AA1=AB=6.
(Ⅰ)求证:直线AB1∥平面BC1D;
(Ⅱ)求证:平面BC1D⊥平面ACC1A;
(Ⅲ)求三棱锥C-BC1D的体积.

分析 (Ⅰ)连接B1C交BC1于点O,连接OD,则点O为B1C的中点,证明:A1B∥OD,即可证明直线AB1∥平面BC1D;
(Ⅱ)证明BD⊥平面ACC1A1,即可证明:平面BC1D⊥平面ACC1A;
(Ⅲ)利用${V}_{C-B{C}_{1}D}$=${V}_{{C}_{1}-BCD}$,求三棱锥C-BC1D的体积.

解答 (Ⅰ)证明:连接B1C交BC1于点O,连接OD,则点O为B1C的中点.
∵D为AC中点,得DO为△AB1C中位线,
∴A1B∥OD.
∵OD?平面AB1C,A1B?平面AB1C,
∴直线AB1∥平面BC1D;…(4分)
(Ⅱ) 证明:∵AA1⊥底面ABC,∴AA1⊥BD,
∵底面ABC正三角形,D是AC的中点,
∴BD⊥AC
∵AA1∩AC=A,∴BD⊥平面ACC1A1
∵BD?平面BC1D,∴平面 BC1D⊥平面ACC1A;…(8分)
(Ⅲ)解:由(Ⅱ)知,△ABC中,BD⊥AC,BD=BCsin60°=3$\sqrt{3}$
∴S△BCD=$\frac{1}{2}×3×3\sqrt{3}$=$\frac{9\sqrt{3}}{2}$,
∴${V}_{C-B{C}_{1}D}$=${V}_{{C}_{1}-BCD}$=$\frac{1}{3}•\frac{9\sqrt{3}}{2}•6$=9$\sqrt{3}$. …(12分)

点评 本题考查线面平行,平面与平面垂足,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知$\frac{1}{x}+\frac{2}{y}$=1(x>0,y>0),求x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,已知点A(-1,0)、B(1,0),动点C满足条件:△ABC的周长为2+2$\sqrt{2}$.记动点C的轨迹为曲线了.
(Ⅰ)求曲线T的方程;
(Ⅱ)已知点M( $\sqrt{2}$,0),N(0,1),是否存在经过点(0,$\sqrt{2}$)且斜率为k的直线l与曲线T有两个不同的交点P和Q,使得向量$\overrightarrow{OP}$+$\overrightarrow{OQ}$与$\overrightarrow{MN}$共线?如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知平面上的动点P(x,y)及两定点M(-2,0)、N(2,0),直线PM、PN的斜率之积为定值$-\frac{3}{4}$,设动点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设Q(x0,y0)(y0>0)是曲线C上一动点,过Q作两条直线l1,l2分别交曲线C于A,B两点,直线l1与l2的斜率互为相反数.试问:直线AB的斜率与曲线C在Q点处的切线的斜率之和是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点B是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点,F1,F2分别是椭圆的左右焦点,直线BF1,BF2与椭圆分别交于E,F两点,△BEF为等边三角形.
(1)求椭圆C的离心率;
(2)已知点(1,$\frac{3}{2}$)在椭圆C上,且直线l:y=kx+m与椭圆C交于M、N两点,若直线F1M,F2N的倾斜角分别为α,β,且α+β=$\frac{π}{2}$,求证:直线l过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.数列{an}满足a1=$\frac{1}{2}$,a1+a2+…+an=n2an,则数列{an}的通项公式为$\left\{\begin{array}{l}{\frac{1}{2},}&{n=1}\\{\frac{2}{n(n+1)},}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{x+1}{{e}^{x}}$
(Ⅰ)求函数f(x)的极大值;
(Ⅱ)设定义在[0,1]上的函数g(x)=xf(x)+tf′(x)+e-x(t∈R)的最大值为M,最小值为N,且M>2N,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|x2-3x+2=0,x∈R},B={x|x2-ax+2=0,x∈R},若B⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在四面体ABCD中,棱长AB=$\sqrt{5}$,其余棱长都是$\sqrt{3}$,求这个四面体的体积以及其外接球的半径.

查看答案和解析>>

同步练习册答案