精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=ln(1+|x|)﹣ ,则使得f(x)>f(2x﹣1)成立的取值范围是(
A.(﹣∞, )∪(1,+∞)
B.( ,1)
C.(
D.(﹣∞,﹣ ,)

【答案】B
【解析】解:∵函数f(x)=ln(1+|x|)﹣ 为偶函数,
且在x≥0时,f(x)=ln(1+x)﹣
导数为f′(x)= + >0,
即有函数f(x)在[0,+∞)单调递增,
∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),
即|x|>|2x﹣1|,
平方得3x2﹣4x+1<0,
解得: <x<1,
所求x的取值范围是( ,1).
故选:B.
【考点精析】通过灵活运用函数单调性的性质,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法中正确的有
①刻画一组数据集中趋势的统计量有极差、方差、标准差等;刻画一组数据离散程度统计量有平均数、中位数、众数等.
②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大.
③有10个阄,其中一个代表奖品,10个人按顺序依次抓阄来决定奖品的归属,则摸奖的顺序对中奖率没有影响.
④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c.已知
(1)求 的值;
(2)若cosB= ,△ABC的周长为5,求b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l:x﹣my+3=0和圆C:x2+y2﹣6x+5=0
(1)当直线l与圆C相切时,求实数m的值;
(2)当直线l与圆C相交,且所得弦长为 时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=2sin(2x+φ)(0<φ<π),y=f(x)图象的一个对称中心是

(1)求φ;
(2)在给定的平面直角坐标系中作出该函数在x∈[0,π]的图象;
(3)求函数f(x)≥1(x∈R)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校有体育特长生25人,美术特长生35人,音乐特长生40人.用分层抽样的方法从中抽取40人,则抽取的体育特长生、美术特长生、音乐特长生的人数分别为(  )
A.8,14,18
B.9,13,18
C.10,14,16
D.9,14,17

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究患肺癌与是否吸烟有关,做了一次相关调查,其中部分数据丢失,但可以确定的是不吸烟人数与吸烟人数相同,吸烟患肺癌人数占吸烟总人数的;不吸烟的人数中,患肺癌与不患肺癌的比为

1若吸烟不患肺癌的有人,现从患肺癌的人中用分层抽样的方法抽取人,再从这人中随机抽取人进行调查,求这两人都是吸烟患肺癌的概率;

2若研究得到在犯错误概率不超过的前提下,认为患肺癌与吸烟有关,则吸烟的人数至少有多少?

附: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】证明下列不等式:
(1)设a,b,c∈R* , 且满足条件a+b+c=1,证明: ≥9
(2)已知a≥0,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人在静水中游泳,速度为4公里/小时,他在水流速度为4公里/小时的河中游泳.
(1)若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度为多少?
(2)他必须朝哪个方向游,才能沿与水流垂直的方向前进?实际前进的速度为多少?

查看答案和解析>>

同步练习册答案