精英家教网 > 高中数学 > 题目详情
19.已知△ABC的面积为S,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=S,则tan2A的值为(  )
A.$\frac{1}{2}$B.2C.$\frac{3}{4}$D.-$\frac{4}{3}$

分析 由已知和三角形的面积公式可得cosA=$\frac{1}{2}$sinA,进而可得tanA=2,由二倍角的正切公式可得答案

解答 解:设△ABC的角A,B,C所对应的边分别为a,b,c.
∵$\overrightarrow{AB}$•$\overrightarrow{AC}$=S,
∴bccosA=$\frac{1}{2}$bcsinA,
∴tanA=2,
∴tan2A=$\frac{2tanA}{1-ta{n}^{2}A}$=$\frac{2×2}{1-{2}^{2}}$=-$\frac{4}{3}$,
故选:D

点评 本题考查倍角公式、平面向量的运算,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图所示,阴影部分的面积为(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.1D.$\frac{7}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{|{x}^{2}-1|,}&{x<1}\\{\frac{lnx}{x},}&{x≥1}\end{array}\right.$若方程f(x)=m恰有五个不相等的实数根,则实数m的取值范围为(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=sin2(x+π)-cos2(x-$\frac{π}{3}$)
(1)求f(x)的最小正周期及单调递增区间;
(2)若|f(x)-m|≤2在x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线m:kx+y+4=0(k∈R) 是圆C:x2+y2+4x-4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线n,则直线n被圆C所截得的弦长为(  )
A.$\sqrt{14}$B.$\sqrt{2}$C.$\sqrt{6}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x、y满足$\left\{\begin{array}{l}{2x-y+1≥0}\\{x≥1}\\{x-2y+3≤0}\end{array}\right.$,则$\frac{y}{x}$的取值范围为($\frac{1}{2}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若(3-2x)5=a0+a1x+a2x2+…+a5x5,则a0+a1+2a2+3a3+4a4+5a5=233.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线ax-y=0(a∈R)与圆C:x2+y2-2ax-2y+2=0交于A,B两点,C为圆心,若∠ACB=$\frac{π}{3}$,则圆C的面积为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列说法正确的是(  )
A.命题“?x0∈R,2${\;}^{{x}_{0}}$>1”的否定是“?x∈R,2x≤1”
B.命题“若x=y,则x2=y2”的否命题是“若x=y,则x2≠y2
C.p:?x∈R,x2+1≥1,q:在△ABC中,若sinA=$\frac{1}{2}$,则A=$\frac{π}{6}$,则p∧q为真命题
D.若平面α⊥平面β,直线a?α,直线b?β,则a⊥b

查看答案和解析>>

同步练习册答案