精英家教网 > 高中数学 > 题目详情
14.直线m:kx+y+4=0(k∈R) 是圆C:x2+y2+4x-4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线n,则直线n被圆C所截得的弦长为(  )
A.$\sqrt{14}$B.$\sqrt{2}$C.$\sqrt{6}$D.2$\sqrt{6}$

分析 推导出直线m:kx+y+4=0(k∈R) 经过圆C:x2+y2+4x-4y+6=0的圆心C(-2,2),从而求出A(0,3),进而求出直线n的方程,由此能求出直线n被圆C所截得的弦长.

解答 解:∵直线m:kx+y+4=0(k∈R) 是圆C:x2+y2+4x-4y+6=0的一条对称轴,
∴直线m:kx+y+4=0(k∈R) 经过圆C:x2+y2+4x-4y+6=0的圆心C(-2,2),
∴-2k+2+4=0,解得k=3,∴A(0,3),
∵过点A(0,k)作斜率为1的直线n,
∴直线n的方程为:y-3=x,即x-y+3=0,
圆心C(-2,2)直线n的距离d=$\frac{|-2-2+3|}{\sqrt{1+1}}$=$\frac{\sqrt{2}}{2}$,
圆C的半径r=$\frac{1}{2}\sqrt{16+16-24}$=$\sqrt{2}$,
∴直线n被圆C所截得的弦长:
|AB|=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{2-\frac{1}{2}}$=$\sqrt{6}$.
故选:C.

点评 本题考查直线被圆截得的弦长的求法,考查圆、直线方程、点到直线距离公式等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知圆锥曲线C:$\left\{\begin{array}{l}x=\sqrt{2}cosθ\\ y=sinθ\end{array}\right.$(θ为参数)和定点$A(0,\frac{{\sqrt{3}}}{3})$,且F1,F2分别为圆锥曲线C的左右焦点.
(Ⅰ)求过点F2且垂直于直线AF1的直线l的参数方程;
(Ⅱ)在(Ⅰ)的条件下,直线l与曲线C相交于M,N两点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)是定义在R上的奇函数,f(x)=g(x)+x2,且当x≥0时,g(x)=log2(x+1),则g(-1)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若△OAB是以O为直角顶点的三角形,且面积为$\frac{\sqrt{6}}{2}$,设向量$\overrightarrow{a}$=$\frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}$,$\overrightarrow{b}$=$\frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}$,$\overrightarrow{OP}$=2$\overrightarrow{a}$+3$\overrightarrow{b}$,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值为13-2$\sqrt{6\sqrt{6}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|(x-1)(x-4)≤0},$B=\{x|\frac{x-5}{x-2}≤0\}$,则A∩B=(  )
A.{x|1≤x≤2}B.{x|1≤x<2}C.{x|2≤x≤4}D.{x|2<x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC的面积为S,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=S,则tan2A的值为(  )
A.$\frac{1}{2}$B.2C.$\frac{3}{4}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过抛物线C:y2=8x的焦点F作直线与C交于A、B两点,线段AB的垂直平分线交x轴于点P,则|$\frac{AB}{PF}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,AB是圆O的直径,点C,D是圆O上异于A,B的点,CD∥AB,F为PD中点,PO⊥垂直于圆O所在的平面,∠ABC=60°.
(Ⅰ)证明:PB∥平面COF;
(Ⅱ)证明:AC⊥PD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知平面向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}$$|=1,\overrightarrow a$与$\overrightarrow b-\overrightarrow a$的夹角为60°,记$\overrightarrow m=λ\overrightarrow a+({1-λ})\overrightarrow b({λ∈R})$,则$|{\overrightarrow m}$|的取值范围为[$\frac{\sqrt{3}}{2}$,+∞).

查看答案和解析>>

同步练习册答案