精英家教网 > 高中数学 > 题目详情
2.若△OAB是以O为直角顶点的三角形,且面积为$\frac{\sqrt{6}}{2}$,设向量$\overrightarrow{a}$=$\frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}$,$\overrightarrow{b}$=$\frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}$,$\overrightarrow{OP}$=2$\overrightarrow{a}$+3$\overrightarrow{b}$,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值为13-2$\sqrt{6\sqrt{6}}$.

分析 以OA所在的直线为x轴,OB所在的直线为y轴建立直角坐标系,设点A(m,0)、B(0,n),由S△OAB=$\frac{1}{2}$mn=$\frac{\sqrt{6}}{2}$可得mn的值,从而利用不等式可求得$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值.

解答 解:以OA所在的直线为x轴,OB所在的直线为y轴建立直角坐标系,

则$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),P(2,3),
设A(m,0),B(0,n),则m>0,n>0.
故$\overrightarrow{PA}$=(m-2,-3),$\overrightarrow{PB}$=(-2,n-3),
又S△OAB=$\frac{1}{2}$mn=$\frac{\sqrt{6}}{2}$,
所以mn=$\sqrt{6}$.
故$\overrightarrow{PA}$•$\overrightarrow{PB}$=-2(m-2)-3(n-3)=13-(2m+3n)≤13-2$\sqrt{6mn}$(当且仅当2m=3n,即n=$\sqrt{\frac{2\sqrt{6}}{3}}$时取“=”).
所以,$\overrightarrow{PA}$•$\overrightarrow{PB}$≤13-2$\sqrt{6\sqrt{6}}$.
故答案为:13-2$\sqrt{6\sqrt{6}}$.

点评 本题考查平面向量数量积的运算,以OA为x轴,OB为y轴建立直角坐标系是关键,考查平面向量的坐标运算与基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.等差数列{an}中,a2+a8-a12=0,a14-a4=2,记sn=a1+a2+…+an,则s15的值为(  )
A.30B.56C.68D.78

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若复数z=a-$\frac{10}{3-i}$(a∈R)是纯虚数,则a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{|{x}^{2}-1|,}&{x<1}\\{\frac{lnx}{x},}&{x≥1}\end{array}\right.$若方程f(x)=m恰有五个不相等的实数根,则实数m的取值范围为(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}为等比数列,a2=2,a3=4,则S5=31.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=sin2(x+π)-cos2(x-$\frac{π}{3}$)
(1)求f(x)的最小正周期及单调递增区间;
(2)若|f(x)-m|≤2在x∈[-$\frac{π}{6}$,$\frac{π}{4}$]上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线m:kx+y+4=0(k∈R) 是圆C:x2+y2+4x-4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线n,则直线n被圆C所截得的弦长为(  )
A.$\sqrt{14}$B.$\sqrt{2}$C.$\sqrt{6}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若(3-2x)5=a0+a1x+a2x2+…+a5x5,则a0+a1+2a2+3a3+4a4+5a5=233.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex,g(x)=lnx+a.
(1)设h(x)=xf(x),求h(x)的最小值;
(2)若曲线y=f(x)与y=g(x)仅有一个交点P,证明:曲线y=f(x)与y=g(x)在点P处有相同的切线,且$a∈({2,\frac{5}{2}})$.

查看答案和解析>>

同步练习册答案