精英家教网 > 高中数学 > 题目详情
已知全集U={3,6,k2+3k+5},A={3,k+8},且∁UA={4m-5},求集合A.
考点:补集及其运算
专题:集合
分析:根据全集U与A,以及A的补集,确定出k的值,即可求出A.
解答: 解:∵全集U={3,6,k2+3k+5},A={3,k+8},且∁UA={4m-5},
∴k+8=6,4m-5=k2+3k+5;k+8=k2+3k+5,4m-5=6,
解得:k=-2,m=2;k=1或-3,m=
11
4

当k=-2,m=2时,k2+3k+5=3,不合题意;
当k=1,m=
11
4
时,全集U={3,6,9},A={3,9},∁UA={6},符合题意;
当k=-3,m=
11
4
时,全集U={3,5,6},A={3,5},∁UA={6},符合题意,
则A={3,9}或{3,5}.
点评:此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+y2=1(a>1)的离心率为
3
2
,过点Q(1,0)任作一条弦交椭圆于C、D两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)设P为直线x=4上任意一点,kPC,kPQ,kPD分别为直线PC,PQ,PD的斜率.是否存在实数λ,使kPC+kPD=λkPQ恒成立?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少0.5万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列{an},每年发放的电动型汽车牌照数为构成数列{bn},完成下列表格,并写出这两个数列的通项公式;
a1=10 a2=9.5 a3=
 
   
a4=
 
     
b1=2 b2=
 
b3=
 
      
b4=
 
       
(2)从2013年算起,求二十年发放的汽车牌照总量.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A1(0,
2
),B1
6
,0),M(2,1),直线l:x=
4
3
6
,若曲线C上的动点P到点B1的距离等于P到直线l的距离的a倍且曲线C过点A1
(Ⅰ)求曲线C的方程;
(Ⅱ)设平行于OM(O为坐标原点)的直线l1在y轴上的截距为m(m≠0),且l1交曲线C于两点A、B.
(ⅰ)求证:直线MA、MB与x轴始终围成一个等腰三角形;
(ⅱ)若点A、B均位于y轴的右侧,求直线MA的斜率k1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

用0~9这10个数,可以组成多少个无重复数字且能被3整除的三位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c为△ABC的三边,化简:
(a-b-c)2
+
(-a-b)2
+
(b-a-c)2 

查看答案和解析>>

科目:高中数学 来源: 题型:

在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下.根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.
寿命(天) 频数 频率
[100,200) 20 0.10
[200,300) 30 a
[300,400) 70 0.35
[400,500) b 0.15
[500,600) 50 0.25
合计 200 1
(Ⅰ)根据频率分布表中的数据,写出a,b的值;
(Ⅱ)某人从灯泡样品中随机地购买了n(n∈N*)个,如果这n个灯泡的等级情况恰好与按三个等级分层抽样所得的结果相同,求n的最小值;
(Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X表示此人所购买的灯泡中次品的个数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

今年年初,我国多个地区发生了持续性大规模的雾霾天气,给我们的身体健康产生了巨大的威胁.私家车的尾气排放也是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75]
频数 5 10 15 10 5 5
赞成人数 4 6 9 6 3 4
(Ⅰ)完成被调查人员的频率分布直方图;

(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x2-3x+2=0},B={x|x2-2x+2m=0},若A∩B=B,求实数m的取值范围.

查看答案和解析>>

同步练习册答案