精英家教网 > 高中数学 > 题目详情
用0~9这10个数,可以组成多少个无重复数字且能被3整除的三位数.
考点:排列、组合的实际应用
专题:应用题,排列组合
分析:被3除余0的数字集合{0,3,6,9},被3除余1的数字集合{1,4,7},被3除余2的数字集合{2,5,8},再考虑从中取数的情况,即可得出结论.
解答: 解:被3除余0的数字集合{0,3,6,9},被3除余1的数字集合{1,4,7},被3除余2的数字集合{2,5,8}
①3个数字都取余数为0的数字有:
A
3
4
-
A
2
3
=18
②3个数字取2个余数为0的:不成立.
③3个数字取1个余数为0的,1个余1的,1个余2的:
C
1
4
C
1
3
C
1
3
A
3
3
-
C
1
3
C
1
3
A
2
2
=90
④3个数字取3个余1的:
A
3
3
=6
⑤3个数字取3个余2的:
A
3
3
=6
∴用0~9这10个数,可以组成18+90+6+6=120个无重复数字且能被3整除的三位数.
点评:本题考查排列、组合的实际应用,考查分类讨论的数学思想,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如下表:
新能源汽车补贴标准
车辆类型 续驶里程R(公里)
80≤R<150 150≤R<250 R≥250
纯电动乘用车 3.5万元/辆 5万元/辆 6万元/辆
某校研究性学习小组,从汽车市场上随机选取了M辆纯电动乘用车,根据其续驶里程R(单次充电后能行驶的最大里程)作出了频率与频数的统计表:
分组 频数 频率
80≤R<150 2 0.2
150≤R<250 5 x
R≥250 y z
合计 M 1
(Ⅰ)求x,y,z,M的值;
(Ⅱ)若从这M辆纯电动乘用车中任选2辆,求选到的2辆车续驶里程都不低于150公里的概率;
(Ⅲ)若以频率作为概率,设X为购买一辆纯电动乘用车获得的补贴,求X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanθ和cotθ是方程x2+kx+1=0的两个根,当|k|≥2时,求tan4θ-cot4θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an},{bn},{cn},已知a1=4,b1=3,c1=5,an+1=an,bn+1=
an+cn
2
,cn+1=
an+bn
2
(n∈N*).
(1)求数列{cn-bn}的通项公式;
(2)求证:对任意n∈N*,bn+cn为定值;
(3)设Sn为数列{cn}的前n项和,若对任意n∈N*,都有p•(Sn-4n)∈[1,3],求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙、丙三名音乐爱好者参加某电视台举办的演唱技能海选活动,在本次海选中有合格和不合格两个等级.若海选合格记1分,海选不合格记0分.假设甲、乙、丙海选合格的概率分别为
2
3
, 
3
4
, 
1
2
,他们海选合格与不合格是相互独立的.
(Ⅰ)求在这次海选中,这三名音乐爱好者至少有一名海选合格的概率;
(Ⅱ)记在这次海选中,甲、乙、丙三名音乐爱好者所得分之和为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={3,6,k2+3k+5},A={3,k+8},且∁UA={4m-5},求集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,长为m+1(m>0)的线段AB的两个端点A和B分别在x轴和y轴上滑动,点M是线段AB上的一点,且
AM
=m
MB

(1)求点M的轨迹Γ的方程,并判断轨迹Γ为何种圆锥曲线;
(2)设过点Q(
1
2
,0)且斜率不为0的直线交轨迹Γ于C,D两点.设点P在x轴上,且恒满足
S△PQC
S△PQD
=
|PC|
|PD|
,试求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,射线OA、OB关于x轴对称,且∠AOB=60°,在射线OA、OB上分别有动点P、Q满足:S△POQ=9,设△POQ的重心为G.
(1)求G点的轨迹方程;
(2)点G到直线PQ距离的最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x3+
1-a
2
x2
-ax-a(a>0).
(Ⅰ)若函数f(x)在区间[-1,1]上单调递减,求实数a的取值范围;
(Ⅱ)当a=l时,求函数f(x)在区间[t,t+3]上的最小值.

查看答案和解析>>

同步练习册答案