分析 (1)先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值,再由特征值列出方程组即可解得相应的特征向量.
(2)依据题意知,$M=[{\begin{array}{l}1&0\\ 0&{-1}\end{array}}]$为反射变换矩阵,所以M99=M,则易求M99$\overrightarrow{β}$.
解答 解:(1)$f(λ)=|{\begin{array}{l}{λ-1}&0\\ 0&{λ+1}\end{array}}|=({λ-1})({λ+1})=0$,
∴λ1=1或λ2=-1.
当λ1=1时,由$\left\{\begin{array}{l}0•x+0•y=0\\ 0•x+2y=0\end{array}\right.$,取$\left\{\begin{array}{l}x=1\\ y=0\end{array}\right.$,即$\underset{\overline{ω}}{{a}_{1}}$=$|\begin{array}{l}{1}\\{0}\end{array}|$.
当λ2=-1时,由$\left\{\begin{array}{l}-2•x+0•y=0\\ 0•x+0•y=0\end{array}\right.$,取$\left\{\begin{array}{l}x=0\\ y=1\end{array}\right.$,即$\underset{\overline{ω}}{{a}_{2}}$=$|\begin{array}{l}{0}\\{1}\end{array}|$.
(2)因为$M=[{\begin{array}{l}1&0\\ 0&{-1}\end{array}}]$为反射变换矩阵,所以M99=M
所以M99=M,
所以M99$\overrightarrow{β}$=M$\overrightarrow{β}$=$|\begin{array}{l}{2}\\{-3}\end{array}|$.
点评 本题主要考查来了矩阵特征值与特征向量的计算等基础知识,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,+∞) | B. | (1,+∞) | C. | [0,1) | D. | [0,1)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,0} | B. | {x=1,y=0} | C. | (1,0) | D. | {(1,0)} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com