精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)(x∈R)满足:对于任意实数x,y,都有f(x+y)=f(x)+f(y)+$\frac{1}{2}$恒成立,且当x>0时,f(x)>f(0)恒成立,
(1)盘点f(x)在R上的单调性,并加以证明;
(2)若函数F(x)=f(max{-x,2x-x2})+f(-k)+1(其中max$\{a,b\}=\left\{\begin{array}{l}a,a≥b\\ b,a<b\end{array}$)有三个不同的零点x1,x2,x3,求u=(x1+x2+x3)+x1x2x3的取值范围.

分析 (1)取x=y=0,求出f(0)的值,代入证明即可;
(2)求出k,构造函数g(x)=max{-x,2x-x2},由-x>2x-x2?x<0,或x>3,得到关于k的二次函数,求出u的范围即可.

解答 解:(1)f(x)在R递增,
证明如下:取x=y=0得:f(0+0)=f(0)+f(0)+$\frac{1}{2}$,解得:f(0)=-$\frac{1}{2}$,
任取x1,x2∈R,且x1<x2
则f(x2)-f(x1)=f((x2-x1)+x1)-f(x1
=f(x2-x1)+f(x1)+$\frac{1}{2}$-f(x1)=f(x2-x1)+$\frac{1}{2}$>0,
∵x2-x1>0,∴f(x2-x1)>-$\frac{1}{2}$,
∴f(x1)<f(x2),
∴函数f(x)在R递增;
(2)由F(x)=0?f(max{-x,2x-x2})+f(-k)+1=0
?f(max{-x,2x-x2})+f(-k)+$\frac{1}{2}$=-$\frac{1}{2}$
?f(max{-x,2x-x2}+(-k))=f(0),
而f(x)在R递增,
∴f(max{-x,2x-x2}+(-k))=f(0)?max{-x,2x-x2}+(-k)=0
?k=max{-x,2x-x2},
构造函数g(x)=max{-x,2x-x2},由-x>2x-x2?x<0,或x>3,
∴g(x)=$\left\{\begin{array}{l}{-x,x∈(-∞,0)∪(3,+∞)}\\{2x{-x}^{2},x∈[0,3]}\end{array}\right.$,
于是,结合题意得:
y=k与y=g(x)的图象有3个不同的交点,
不妨设这3个零点为:x1<x2<x3
则0<k<1,x1=-k,x2,x3是方程2x-x2=k的两根,
即x2,x3的方程x2-2x+k=0的两根,
∴$\left\{\begin{array}{l}{{x}_{2}{+x}_{3}=2}\\{{x}_{2}{•x}_{3}=k}\end{array}\right.$,
∴u=(x1+x2+x3)+x1x2x3=2-k-k2=$\frac{9}{4}$-${(k+\frac{1}{2})}^{2}$在k∈(0,1)递减,
故0<u<2.

点评 不同考查了函数的单调性、最值问题,考查转化思想,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在△ABC中,a,b,c分别为角A,B,C的对边,且cos2B+cosB+cos(C-A)=1,则(  )
A.a,b,c成等比数列B.a,b,c成等差数列C.a,c,b成等比数列D.a,c,b成等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列命题:
①在△ABC中,若$\overrightarrow{AB}•\overrightarrow{AC}$>0,则∠A为锐角,
②函数y=x3在R上既是奇函数又是增函数,
③若$\overrightarrow a=(λ,2),\overrightarrow b=(-3,-5),且\overrightarrow a与\overrightarrow b的夹角为钝角,则λ的取值范围是λ>-\frac{10}{3}$
④函数y=f(x)的图象与直线x=a至多有一个交点,
⑤若{an}成等比数列,Sn是前n项和,则S4,S8-S4,S12-S8成等比数列;
其中正确命题的序号是①②④.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知抛物线C:x2=2py(p>0)过点(2,1),直线l过点P(0,-1)与抛物线C交于A、B两点,点A关于y轴的对称点为A′,连接A′B
(1)求抛物线C的标准方程;
(2)问直线A'B是否过定点?若是,求长定点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知锐角三角形的边长分别为1,3,x,则x的取值范围为(2$\sqrt{2}$,$\sqrt{10}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(3x)=4x•log2x,那么$f(\frac{3}{2})$的值是(  )
A.-2B.4C.8(log23-1)D.$-\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设△ABC的三边长分别为a、b、c,△ABC的面积为S,内切圆半径为r,外接圆半径为R,则$r=\frac{2S}{a+b+c}$,类比得四面体S-ABCD的四个侧面的面积分别为S1,S2,S3,S4,四面体S-ABCD的体积为V,内切球的半径为R,则R=$R=\frac{3V}{{{S_1}+{S_2}+{S_3}+{S_4}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知正项数列{an}满足a1=2且(n+1)an2+anan+1-nan+12=0(n∈N*
(Ⅰ)证明数列{an}为等差数列;
(Ⅱ)若记bn=$\frac{4}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知矩阵M=$[{\begin{array}{l}1&0\\ 0&{-1}\end{array}}]$.
(1)求矩阵M的特征值和特征向量;
 (2)设$\vec β$=$[{\begin{array}{l}2\\ 3\end{array}}]$,求M99$\overrightarrow{β}$.

查看答案和解析>>

同步练习册答案