分析 (1)利用点的坐标在曲线上,代入求解即可.
(2)设直线l的方程为y=kx-1,又设A(x1,y1),B(x2,y2),则A'(-x1,y1),联立直线与抛物线方程,利用韦达定理以及判别式,求出直线的斜率,推出直线方程,利用直线系求解即可.
解答 解:(1)将点(2,1)代入抛物线x2=2py的方程得,p=2,
所以,抛物线C的标准方程为x2=4y. …(4分)
(2)设直线l的方程为y=kx-1,又设A(x1,y1),B(x2,y2),则A'(-x1,y1),
由$\left\{{\begin{array}{l}{y=\frac{1}{4}{x^2}}\\{y=kx-1}\end{array}}\right.$得x2-4kx+4=0,则△=16k2-16>0,x1•x2=4,x1+x2=4k,
所以${k_{A'B}}=\frac{{{y_2}-{y_1}}}{{{x_2}-(-{x_1})}}=\frac{{\frac{{{x_2}^2}}{4}-\frac{{{x_1}^2}}{4}}}{{{x_1}+{x_2}}}=\frac{{{x_2}-{x_1}}}{4}$,
于是直线A'B的方程为$y-\frac{{{x_2}^2}}{4}=\frac{{{x_2}-{x_1}}}{4}(x-{x_2})$,…(8分)
所以,$y=\frac{{{x_2}-{x_1}}}{4}(x-{x_2})+\frac{{{x_2}^2}}{4}=\frac{{{x_2}-{x_1}}}{4}x+1$,当x=0时,y=1,
所以直线A'B过定点(0,1). …(10分)
点评 本题考查抛物线方程的求法,直线与抛物线的位置关系,直线系方程的应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 17 | C. | 18 | D. | 19 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com