分析 (I)由(n+1)an2+anan+1-nan+12=0(n∈N*),变形得:(an+an+1)[(n+1)an-nan+1]=0,由于{an}为正项数列,可得$\frac{{{a_{n+1}}}}{a_n}=\frac{n+1}{n}$,利用累乘法可得an,再利用等差数列的通项公式即可证明.
(II)利用“裂项求和方法”即可得出.
解答 (I)证明:由(n+1)an2+anan+1-nan+12=0(n∈N*),
变形得:(an+an+1)[(n+1)an-nan+1]=0,
由于{an}为正项数列,∴$\frac{{{a_{n+1}}}}{a_n}=\frac{n+1}{n}$,
利用累乘法得:${a_n}=2n(n∈{N^*})$从而得知:数列{an}是以2为首项,以2为公差的等差数列.
(Ⅱ)解:由(Ⅰ)知:${b_n}=\frac{4}{2n•2(n+1)}=\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$,
从而${S_n}={b_1}+{b_2}+…+{b_n}=(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})+…+(\frac{1}{n-1}-\frac{1}{n+1})$=$1-\frac{1}{n+1}=\frac{n}{n+1}$.
点评 本题考查了数列递推关系、等差数列的通项公式、“裂项求和方法”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,2) | B. | [-2,2] | C. | (1,2] | D. | [-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{\sqrt{e}}{e}$-8] | B. | [$\frac{\sqrt{e}}{e}$-8,+∞) | C. | [$\sqrt{2}$,e) | D. | (-$\frac{\sqrt{3}}{3}$,$\frac{e}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com