精英家教网 > 高中数学 > 题目详情
15.设Sn为等差数列{an}的前n项和,若a5>0,a1+a10<0,则当Sn最大时正整数n为(  )
A.4B.5C.6D.10

分析 由等差数列通项公式得到d<0,4<-$\frac{{a}_{1}}{d}$<$\frac{9}{2}$,由此能求出当Sn最大时正整数n的值.

解答 解:∵Sn为等差数列{an}的前n项和,a5>0,a1+a10<0,
∴$\left\{\begin{array}{l}{{a}_{1}+4d>0}\\{2{a}_{1}+9d<0}\end{array}\right.$,
∴$-4d<{a}_{1}<-\frac{9}{2}d$,d<0,
∴4<-$\frac{{a}_{1}}{d}$<$\frac{9}{2}$
Sn=na1+$\frac{n(n-1)}{2}d$=$\frac{d}{2}{n}^{2}$+(a1-$\frac{d}{2}$)n=$\frac{d}{2}(n+\frac{2{a}_{1}-d}{2d})^{2}-\frac{d}{2}(\frac{2{a}_{1}-d}{2d})^{2}$,
∴n=$\frac{d-2{a}_{1}}{2d}$=$\frac{1}{2}$-$\frac{{a}_{1}}{d}$∈($\frac{7}{2}$,5),
∴当Sn最大时正整数n为5.
故选:B.

点评 本题考查等差数列前n项和最大时正整数n的求法,是中档题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,PA⊥平面ABCD,AB⊥AD,AD∥BC,PA=AB=BC,AD=2AB,点M,N分别在PB,PC上,且MN∥BC.
(Ⅰ)证明:平面AMN⊥平面PBA;
(Ⅱ)若M为PB的中点,求二面角M-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.为了得到函数y=cos($\frac{1}{2}$x+$\frac{π}{3}$)的图象,只要把y=cos$\frac{1}{2}x$的图象上所有的点(  )
A.向左平移$\frac{π}{3}$个单位长度B.向右平移$\frac{π}{3}$个单位长度
C.向左平移$\frac{2π}{3}$个单位长度D.向右平移$\frac{2π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.一个棱长为2的正方体,它的顶点都在球面上,这个球的体积是(  )
A.B.2$\sqrt{3}$πC.4$\sqrt{3}$πD.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A+B=$\frac{5}{4}$π,且A、B≠kπ+$\frac{π}{2}$(k∈Z).
(Ⅰ)求证:(1+tanA)(1+tanB)=2;
(Ⅱ)求tan$\frac{5}{8}$π的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在锐角△ABC中,$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{\sqrt{3}ab}$=$\frac{cosC}{sin(B+C)}$.
(1)求角A;
(2)若a=2,且sinB+cos(C+2B-$\frac{5π}{6}$)取得最大值时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知抛物线C:x2=4y的焦点为F,准线为l,P是l上一点,Q是直线PF与抛物线C的一个交点,若$\overrightarrow{PF}$=4$\overrightarrow{QF}$,则|QF|=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列四个函数中,既是定义域上的奇函数又在区间(0,1)内单调递增的是(  )
A.y=x3B.y=cosxC.y=ln$\frac{1-x}{1+x}$D.y=ex

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,∠PAQ是村里一个小湖的一角,其中∠PAQ=60°.为了给村民营造丰富的休闲环境,村委会决定在直线湖岸AP与AQ上分别建观光长廊AB与AC,其中AB是宽长廊,造价是800元/米;AC是窄长廊,造价是400元/米;两段长廊的总造价预算为12万元(恰好都用完);同时,在线段BC上靠近点B的三等分点D处建一个表演舞台,并建水上通道AD(表演舞台的大小忽略不计),水上通道的造价是600元/米.
(1)若规划宽长廊AB与窄长廊AC的长度相等,则水上通道AD的总造价需多少万元?
(2)如何设计才能使得水上通道AD的总造价最低?最低总造价是多少万元?

查看答案和解析>>

同步练习册答案