精英家教网 > 高中数学 > 题目详情
20.在锐角△ABC中,$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{\sqrt{3}ab}$=$\frac{cosC}{sin(B+C)}$.
(1)求角A;
(2)若a=2,且sinB+cos(C+2B-$\frac{5π}{6}$)取得最大值时,求△ABC的面积.

分析 (1)利用余弦定理、诱导公式化简所给的式子,求得sinA 的值,可得A的值.
(2)由(1)可得B+C=$\frac{2π}{3}$,故有C+2B-$\frac{5π}{6}$=B-$\frac{π}{6}$,再利用两角和差的三角公式、正弦函数的值域求得sinB+cos(C+2B-$\frac{5π}{6}$)取得最大值$\sqrt{3}$,此时,△ABC为等边三角形,从而求得它的面积.

解答 解:(1)锐角△ABC中,∵$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{\sqrt{3}ab}$=$\frac{cosC}{sin(B+C)}$,∴$\frac{2cosC}{\sqrt{3}}$=$\frac{cosC}{sinA}$,∴sinA=$\frac{\sqrt{3}}{2}$,A=$\frac{π}{3}$.
(2)由(1)可得B+C=$\frac{2π}{3}$,∴C+2B-$\frac{5π}{6}$=B-$\frac{π}{6}$,
∴sinB+cos(C+2B-$\frac{5π}{6}$)=sinB+cos(B-$\frac{π}{6}$)=$\frac{3}{2}$sinB+$\frac{\sqrt{3}}{2}$cosB=$\sqrt{3}$sin(B+$\frac{π}{6}$),
故当B+$\frac{π}{6}$=$\frac{π}{2}$时,即B=$\frac{π}{3}$时,sinB+cos(C+2B-$\frac{5π}{6}$)取得最大值$\sqrt{3}$,此时,A=B=C=$\frac{π}{3}$,△ABC为等边三角形,
∴△ABC的面积为 $\frac{1}{2}$•bc•sinA=$\frac{1}{2}$•2•2•$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.

点评 本题主要考查正弦定理、余弦定理的应用、两角和差的三角公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.一个几何体的三视图如图所示,则该几何体的体积等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为$\stackrel{∧}{y}$=0.85x-85.71,则下列结论中不正确的是(  )
A.若该大学某女生身高为170cm,则她的体重必为58.79kg
B.y与x具有正的线性相关关系
C.回归直线过样本点的中心($\overline x$,$\overline y$)
D.身高x为解释变量,体重y为预报变量

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若样本点为(21,2.1)、(23,2.3)、(25,2.8)、(27,3.2)、(29,4.1),则样本点的中心为(25,2.9).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设Sn为等差数列{an}的前n项和,若a5>0,a1+a10<0,则当Sn最大时正整数n为(  )
A.4B.5C.6D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.《中国谜语大会》是中央电视台科教频道的一档集文化、益智、娱乐为一体的大型电视竞猜节目,目的是为弘扬中国传统文化、丰富群众文化生活.为选拔选手参加“中国谜语大会”,某地区举行了一次“谜语大赛”活动.为了了解本次竞赛选手的成绩情况,从中抽取了部分选手的分数(得分取正整数,满分为100分)作为样本进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100)的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60),[90,100)的数据).

(I)求样本容量n和频率分布直方图中的x,y的值;
(II)分数在[80,90)的学生中,男生有2人,现从该组抽取三人“座谈”,求至少有两名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)是R上的奇函数,当x≥0时,f(x)=x${\;}^{\frac{1}{3}}}$+5x+m,则f(-8)=-42.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用数学归纳法证明等式1+2+3+…+2n=$\frac{{{2^n}({{2^n}+1})}}{2}$(n≥2,n∈N*)的过程中,第一步归纳基础,等式左边的式子是(  )
A.1+2B.1+2+3+4C.1+2+3D.1+2+3+4+5+6+7+8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.给出下列命题:
①复数z=$\frac{3-ai}{i}$在复平面内对应的点在第三象限是a≥0的充分不必要条件;
②设α,β为两个不同的平面,直线l?α,则“l⊥β”是“α⊥β”成立的充要条件;
③$a={log_{\frac{1}{3}}}2$,b=log${\;}_{\frac{1}{2}}$3,$c={(\frac{1}{3})^{0.5}}$大小关系是a<b<c;
④已知定点A(1,1),抛物线y2=4x的焦点为F,点P为抛物线上任意一点,则|PA|+|PF|的最小值为2;以上命题正确的是①④(请把正确命题的序号都写上)

查看答案和解析>>

同步练习册答案