精英家教网 > 高中数学 > 题目详情
14.已知△ABC的三个顶点A(0,0)、B(4,0)、C(0,3),点P是它的内切圆上一点,求以PA、PB、PC为直径的三个圆面积之和的最大值和最小值.

分析 由题意可知△ABC是边长为3,4,5的直角三角形,点P是此三角形内切圆上一动点,求三个圆的面积之和的最大值与最小值的和,转化为点P到三角形三个定点的距离的平方和的最值问题.

解答 解:由A(0,0)、B(4,0)、C(0,3),设P(x,y),△ABC内切圆半径为r.
∵三角形ABC面积S=$\frac{1}{2}$AB×AC=$\frac{1}{2}×3×4$=$\frac{1}{2}$(AB+AC+BC)r,解得r=1,
即内切圆圆心坐标为(1,1),
∵P在内切圆上,
∴(x-1)2+(y-1)2=1.
∵P点到A,B,C距离的平方和为d=x2+y2+(x-4)2+y2+x2+(y-3)2=3(x-1)2+3(y-1)2-2x+19=22-2x
显然 0≤x≤2 即18≤d≤22,
∴$\frac{9π}{2}≤\frac{πd}{4}≤\frac{11π}{2}$,即以PA,PB,PC为直径的三个圆面积之和最大值为$\frac{11π}{2}$,最小值为$\frac{9π}{2}$.

点评 本题考查了解析法求最值,求三个圆的面积之和的最大值与最小值的和转化为点P到三角形三个定点的距离的平方和的最值问题,体现了转化的思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)经过点$M(1,\frac{{\sqrt{2}}}{2})$,且其离心率为$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆C的方程;
(2)若F为椭圆C的右焦点,椭圆C与y轴的正半轴相交于点B,经过点B的直线与椭圆C相交于另一点A,且满足$\overrightarrow{BA}•\overrightarrow{BF}=2$,求△ABF外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆Γ:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦点F2的坐标为(c,0),若b=c,且点(c,l)在椭圆Γ上.
(I)求椭圆Γ的标准方程;
(Ⅱ)当k≠0时,若直线l1:y=k(x+$\sqrt{2}$),l2:y=-$\frac{1}{k}$(x+$\sqrt{2}$)与椭圆Γ的交点分别为A,B和C,D,记四边形ACBD的面积为S1
①求S1关于k的表达式;
②若直线l3:$\sqrt{2}$kx-y+k=0,l4:$\sqrt{2}$x+ky+1=0与圆E:x2+y2=1的交点分别为M,N和P,Q,记四边形MNPQ的面积为S2,试判断$\frac{S_1}{S_2}$是否为定值?若是,求出该定值,若不是,请说明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设P、T、S是I的子集,若P∪T=CIP∪S,则(  )
A.P∪T∪S=IB.P=T=SC.T=ID.P∪CIS=I

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点M为椭圆C:3x2+4y2=12的右顶点,点A,B是椭圆C上不同的两点(均异于点M),且满足直线MA与直线MB斜率之积为$\frac{1}{4}$.
(Ⅰ)求椭圆C的离心率及焦点坐标;
(Ⅱ)试判断直线AB是否过定点:若是,求出定点坐标;若否,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知在数列{an}中,a1=-1,an=3an-1+2n(n≥2),求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系内,点P在第四象限,点P到点A(1,0)、B(a,4)及到直线x=-1的距离都相等,如果这样的点P恰好只有一个,那么a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=2015x-log2015($\sqrt{{x}^{2}+1}$-x)-2015-x+2,则关于x的不等式f(3x+1)+f(x)>4的解集为(-$\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.根据国家考试院的规定,各省自主命题逐步过渡到全国统一命题,2016年已经有25个省、直辖市参与全国统一命题.每年根据考试院出具两套试题,即全国高考新课标卷Ⅰ和全国新课标卷Ⅱ.已知各省选择全国高考新课标卷Ⅰ和全国新课标卷Ⅱ是等可能的,也是相互独立的.
(Ⅰ)在四川省选择全国新课标卷Ⅱ的条件下,求四川省在内的三个省中恰有两个省在2016年选择全国新课标卷 II的概率.
(Ⅱ)假设四川省在选择时排在第四位,用X表示四川省在选择选择全国新课标卷Ⅱ前,前三个省选择选择全国新课标卷Ⅱ的省的个数,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案