精英家教网 > 高中数学 > 题目详情
2.设P、T、S是I的子集,若P∪T=CIP∪S,则(  )
A.P∪T∪S=IB.P=T=SC.T=ID.P∪CIS=I

分析 分P=∅、P≠∅两种情况讨论,利用补集的性质即得结论.

解答 解:当P=∅时,CIP=I,
∵P∪T=CIP∪S,∴T=I,
∴P∪T∪S=I;
当P≠∅时,P∩CIP=∅,P∪CIP=I,
∵P∪T=CIP∪S,∴CIP?T,P?S,
∴P∪T∪S=I;
综上所述,P∪T∪S=I,
故选:A.

点评 本题考查并集及其运算,考查分类讨论的思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,已知椭圆C中心在原点,焦点在x轴上,F1,F2分别为左右焦点,椭圆的短轴长为2,过F2的直线与椭圆C交于A,B两点,三角形F1BF2面积的最大值为$\sqrt{{a}^{2}-1}$(a>1).
(Ⅰ)求椭圆C的方程(用a表示);
(Ⅱ)求三角形F1AB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.计算:∫$\frac{1}{(x-1)(x-2)(x-3)}$dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设椭圆$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的短轴为AB,离心率为$\frac{\sqrt{3}}{2}$,M为椭圆上非A,B的点,MA,MB与x轴交于点E,F,且|OE|•|OF|=4
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若P,Q为椭圆上两点,连接OP,OQ,满足kOP•kOQ=-$\frac{1}{4}$,求证:|OP|2+|OQ|2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一焦点F在抛物线y2=4x 的准线上,且点M(1,$-\frac{{\sqrt{2}}}{2}$)在椭圆上
(Ⅰ)求椭圆E的方程;
(Ⅱ)过直线x=-2上一点P作椭圆E的切线,切点为Q,证明:PF⊥QF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知O是△ABC内心,若$\overrightarrow{AO}$=$\frac{2}{5}\overrightarrow{AB}$+$\frac{1}{5}\overrightarrow{AC}$,则cos∠BAC=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的三个顶点A(0,0)、B(4,0)、C(0,3),点P是它的内切圆上一点,求以PA、PB、PC为直径的三个圆面积之和的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,且tanA+tanB+$\sqrt{3}$=$\sqrt{3}$tanAtanB.
(1)求∠C;
(2)若c=$\frac{7}{2}$,△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在数列{an}中a1=1,n≥2时Sn2-anSn+2an=0.
(1)求{an}通项公式;
(2)bn=2n-1记{$\frac{1}{{S}_{n}{b}_{n}}$}前n项和为Tn.求证:Tn<3.

查看答案和解析>>

同步练习册答案