精英家教网 > 高中数学 > 题目详情
下列说法正确的是( ).
A.方向相同或相反的向量是平行向量
B.零向量是
C.长度相等的向量叫做相等向量
D.共线向量是在一条直线上的向量
B

试题分析:选项A:方向相同或相反的非零向量是平行向量;
选项C:方向相同且长度相等的向量叫相等向量;
选项D:共线向量所在直线可能重合,也可能平行;故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

[理]如图,在正方体ABCD-A1B1C1D1中,E是棱A1D1的中点,H为平面EDB内一点,
HC1
={2m,-2m,-m}(m<0)

(1)证明HC1⊥平面EDB;
(2)求BC1与平面EDB所成的角;
(3)若正方体的棱长为a,求三棱锥A-EDB的体积.
[文]若数列{an}的通项公式an=
1
(n+1)2
(n∈N+)
,记f(n)=(1-a1)(1-a2)…(1-an).
(1)计算f(1),f(2),f(3)的值;
(2)由(1)推测f(n)的表达式;
(3)证明(2)中你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD是边长为2的正方形,DE⊥平面ABCD,AFDE,DE=3AF=3.
(1)求证:AC⊥平面BDE;
(2)求直线AB与平面BEF所成的角的正弦值;
(3)线段BD上是否存在点M,使得AM平面BEF?若存在,试确定点M的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

一个多面体的直观图及三视图分别如图1和图2所示(其中正视图和侧视图均为矩形,俯视图是直角三角形),M、N分别是AB1、A1C1的中点,MN⊥AB1


(Ⅰ)求实数a的值并证明MN平面BCC1B1
(Ⅱ)在上面结论下,求平面AB1C1与平面ABC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,AC⊥BC,且AC=BC.
(1)求证:AM⊥平面EBC;
(2)求二面角A-EB-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两个非零向量a与b,定义|a×b|=|a|·|b|sin θ,其中θ为a与b的夹角.若a=(-3,4),b=(0,2),则|a×b|的值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,是圆上的三点,的延长线与线段交于圆内一点,若
,则 (    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中,D为AB边上一点,,则=(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,且,则(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案