【题目】已知函数![]()
(1)求函数
的最小正周期、单调区间;
(2)求函数
在区间
上的最小值和最大值.
【答案】(1)
,增区间是
,减区间是
(2)
,![]()
【解析】
(1)根据余弦函数的图象与性质,求出f(x)的最小正周期和单调增、减区间;
(2)求出x∈[
,
]时2x
的取值范围,从而求得f(x)的最大最小值.
(1)函数f(x)
cos(2x
)中,它的最小正周期为T
π,
令﹣π+2kπ≤2x
2kπ,k∈Z,
解得
kπ≤x
kπ,k∈Z,
所以f(x)的单调增区间为[
kπ,
kπ],k∈Z;
令2kπ≤2x
π+2kπ,k∈Z,
解得
kπ≤x
kπ,k∈Z,
所以f(x)的单调减区间为[
kπ,
kπ],k∈Z;
(2)x∈[
,
]时,
2x≤π,所以
2x
;
令2x
,解得x
,此时f(x)取得最小值为f(
)
(
)=﹣1;
令2x
0,解得x
,此时f(x)取得最大值为f(
)
1
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,焦点在
轴上的椭圆
经过点
,其中
为椭圆
的离心率.过点
作斜率为
的直线
交椭圆
于
两点(
在
轴下方).
(1)求椭圆
的方程;
(2)过原点
且平行于
的直线交椭圆
于点
,
,求
的值;
(3)记直线
与
轴的交点为
.若
,求直线
的斜率
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①存在实数x,使得sin x+cos x=2;
②函数y=cos
是奇函数;
③若角α,β是第一象限角,且α<β,则tan α<tan β;
④函数y=sin
的图象关于点(
,0)成中心对称.
⑤直线x=
是函数y=sin
图象的一条对称轴;
其中正确的命题是( ).
A.②④B.①③C.①④D.②⑤
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为
(
)件.当
时,年销售总收人为(
)万元;当
时,年销售总收人为
万元.记该工厂生产并销售这种产品所得的年利润为
万元.(年利润=年销售总收入一年总投资)
(1)求
(万元)与
(件)的函数关系式;
(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
在△ABC中,内角A,B,C所对的边分别为a,b,c.已知acosC+ccosA=2bcosA.
(1)求角A的值;
(2)求sinB+sinC的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了让学生更多的了解“数学史”知识,某中学高二年级举办了一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:
序号 | 分组(分数) | 组中值 | 频数(人数) | 频率 |
1 |
| 65 | ① | 0.12 |
2 |
| 75 | 20 | ② |
3 |
| 85 | ③ | 0.24 |
4 |
| 95 | ④ | ⑤ |
合计 | 50 | 1 |
(1)填充频率分布表中的空格;
(2)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名同学获奖?
(3)在上述统计数据的分析中有一项计算见算法流程图,求输出的
的值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为保护环境,某单位采用新工艺,把二氧化碳转化为一种可利用的化工产品。已知该单位每月的处理量最多不超过300吨,月处理成本
(元)与月处理量
(吨)之间的函数关系式可近似的表示为:
,且每处理一吨二氧化碳得到可利用的化工产品价值为300元。
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)要保证该单位每月不亏损,则每月处理量应控制在什么范围?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜.投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为
,乙每次投篮命中的概率为
,且各次投篮互不影响.现由甲先投.
(1)求甲获胜的概率;
(2)求投篮结束时甲的投篮次数X的分布列与期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com