【题目】甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜.投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为,乙每次投篮命中的概率为,且各次投篮互不影响.现由甲先投.
(1)求甲获胜的概率;
(2)求投篮结束时甲的投篮次数X的分布列与期望.
【答案】(1);(2)分布列见解析,数学期望为
【解析】
试题分析:(1)本题考查互斥事件的概率,设甲第i次投中获胜的事件为Ai (i=1,2,3),则A1,A2,A3彼此互斥,分别计算出的概率(可用相互独立事件同时发生的概率公式计算),然后相加即得;
(2)甲的投篮次数X的取舍分别1,2,3,注意这里事件含甲第次投中和第次投不中而接着乙投中,结合(1)的过程可很快求和各事件概率,从而得分布列,并依据期望公式可计算出期望值.
试题解析:(1)设甲第i次投中获胜的事件为Ai(i=1,2,3),则A1,A2,A3彼此互斥.
甲获胜的事件为A1+A2+A3.
P(A1)=;
P(A2)=;
P(A3)=()2×()2×=.
所以P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=++=.
答:甲获胜的概率为.
(2)X所有可能取的值为1,2,3.
则 P(X=1)=+×=;
P(X=2)=+×××=;
P(X=3)=()2×()2×1=.
即X的概率分布列为
X | 1 | 2 | 3 |
P |
所以X的数学期望E(X)=1×+2×+3×=.
科目:高中数学 来源: 题型:
【题目】5名男生3名女生参加升旗仪式:
(1)站两横排,3名女生站前排,5名男生站后排有多少种站法?
(2)站两纵列,每列4人,每列都有女生且女生站在男生前面,有多少种排列方法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是平行四边形,,为的中点,且有,现以为折痕,将折起,使得点到达点的位置,且
(1)证明:平面;
(2)若四棱锥的体积为,求四棱锥的侧面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】哈师大附中高三学年统计甲、乙两个班级一模数学分数(满分150分),每个班级20名同学,现有甲、乙两位同学的20次成绩如下列茎叶图所示:
(I)根据基叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;
(Ⅱ)根据基叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可)
(Ⅲ)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设事件为“其中2 个成绩分别属于不同的同学”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】棱长为1的正方体中,点、分别在线段、上运动(不包括线段端点),且.以下结论:①;②若点、分别为线段、的中点,则由线与确定的平面在正方体上的截面为等边三角形;③四面体的体积的最大值为;④直线与直线的夹角为定值.其中正确的结论为______.(填序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知变量之间的线性回归方程为,且变量之间的一组相关数据如表所示,则下列说法错误的是( )
x | 6 | 8 | 10 | 12 |
y | 6 | m | 3 | 2 |
A. 变量之间呈现负相关关系
B. 的值等于5
C. 变量之间的相关系数
D. 由表格数据知,该回归直线必过点(9,4)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com