精英家教网 > 高中数学 > 题目详情

【题目】棱长为1的正方体中,点分别在线段上运动(不包括线段端点),且.以下结论:①;②若点分别为线段的中点,则由线确定的平面在正方体上的截面为等边三角形;③四面体的体积的最大值为;④直线与直线的夹角为定值.其中正确的结论为______.(填序号)

【答案】① ② ③

【解析】

①作NEBCMFAB,垂足分别为EF,可得四边形MNEF是矩形,可得MNFE,利用AA1⊥面AC,可得结论成立;

②截面为AB1C,为等边三角形,故正确.

③设,则dMBCN=,故③成立;

④设,当接近于0时,直线与直线的夹角接近于,当接近于1时,夹角接近于,故④不正确;

①作NEBCMFAB,垂足分别为EF,∵AMBN,∴NEMF,∴四边形MNEF是矩形,∴MNFE,∵AA1⊥面ACEFAC,∴AA1EF,∴AA1MN,故①正确;

②点MN分别为线段AB1BC1的中点,则由线MNAB1确定的平面在正方体ABCDA1B1C1D1 上的截面为AB1C,为等边三角形,故②正确.

③设,则dMBCN,又AM=BN=,

=dMBCN =,∴dMBCN=,当且仅当时取得最大值,故③成立;

④设,当接近于0时,直线与直线的夹角近似于直线和直线的夹角,接近于,当接近于1时,直线与直线的夹角近似于直线和直线的夹角,接近于,故④不正确;

综上可知,正确的结论为①②③

故答案为:①②③

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了让学生更多的了解数学史知识,某中学高二年级举办了一次追寻先哲的足迹,倾听数学的声音的数学史知识竞赛活动,共有800名学生参加了这次竞赛,为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:

序号

分组(分数)

组中值

频数(人数)

频率

1

65

0.12

2

75

20

3

85

0.24

4

95

合计

50

1

1)填充频率分布表中的空格;

2)规定成绩不低于85分的同学能获奖,请估计在参加的800名学生中大概有多少名同学获奖?

3)在上述统计数据的分析中有一项计算见算法流程图,求输出的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

1)求的定义域;并证明是定义域上的奇函数;

2)判断在定义域上的单调性(无需证明);

3)求使不等式解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人轮流投篮,每人每次投一次篮,先投中者获胜.投篮进行到有人获胜或每人都已投球3次时结束.设甲每次投篮命中的概率为,乙每次投篮命中的概率为,且各次投篮互不影响现由甲先投.

1)求甲获胜的概率;

2)求投篮结束时甲的投篮次数X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以原点为极点,以轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线 的极坐标方程为:.

(I)若曲线,参数方程为:(为参数),求曲线的直角坐标方程和曲线的普通方程

(Ⅱ)若曲线,参数方程为 (为参数),,且曲线,与曲线交点分别为,求的取值范围,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆,其长轴是短轴的两倍,以某短轴顶点和长轴顶点为端点的线段作为直径的圆的周长为,直线与椭圆交于两点.

(1)求椭圆的方程;

(2)过点作直线的垂线,垂足为.若,求点的轨迹方程;

(3)设直线的斜率分别为,其中.设的面积为.以为直径的圆的面积分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若,讨论的单调性

(2)若上有两个零点的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016高考新课标II,理15)有三张卡片,分别写有121323.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:我与丙的卡片上相同的数字不是1”,丙说:我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的各条棱长均相等, 的中点, 分别是线段和线段上的动点(含端点),且满足.当运动时,下列结论中不正确的是( )

A. 平面平面 B. 三棱锥的体积为定值

C. 可能为直角三角形 D. 平面与平面所成的锐二面角范围为

查看答案和解析>>

同步练习册答案