精英家教网 > 高中数学 > 题目详情
8.椭圆$\frac{{x}^{2}}{4}$+$\frac{4{y}^{2}}{25}$=4的焦点坐标是(  )
A.(±4,0)B.(0,±3)C.(±3,0)D.(0,±4)

分析 椭圆$\frac{{x}^{2}}{4}$+$\frac{4{y}^{2}}{25}$=4化为:$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{16}$=1,可得a,b,c=$\sqrt{{a}^{2}-{b}^{2}}$,且焦点在y轴上,即可得出.

解答 解:椭圆$\frac{{x}^{2}}{4}$+$\frac{4{y}^{2}}{25}$=4化为:$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{16}$=1,
可得a=5,b=4,∴c=$\sqrt{{a}^{2}-{b}^{2}}$=3,且焦点在y轴上.
焦点坐标是(0,±3).
故选:B.

点评 本题考查了椭圆的标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.(1)已知$C_{15}^{3x-2}=C_{15}^{x+1}$,求$C_{10}^x+C_{10}^{x-1}$的值;
(2)若${(\root{3}{x}-\frac{1}{x})^n}(n∈N)$的展开式中第3项为常数项,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.极坐标方程5ρ2cos2θ+ρ2-24=0所表示的曲线的焦距为$2\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)(理科生做)若PA=1,AD=2,求二面角B-PC-A的正切值;
(Ⅲ)(文科生做)若PA=1,AD=2,求几何体E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a,b为两条直线,α,β为两个平面,则下列结论成立的是(  )
A.若a?α,b?β,且a∥b,则α∥βB.若a?α,b?β,且a⊥b,则α⊥β
C.若a∥α,b?β,则a∥bD.若a⊥α,b⊥β,α∥β,则a∥b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.甲、乙两名篮球运动员,各自的投篮命中率分别为0.5与0.8,如果每人投篮两次.
(I)求甲比乙少投进一次的概率.
(Ⅱ)若投进一个球得2分,未投进得0分,求两人得分之和ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.给出四个关系式中:①∅={0};②0∈{(0,0)};③0∈{0};④0∉N*.其中表述正确的是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知一条光线从点(-2,-3)射出,经y轴反射后与圆x2+y2+6x-4y+12=0相切,求反射光线所在直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知平面区域Ω={(x,y)|0≤x≤1,0≤y≤$\frac{1}{2}$},曲线C:y=$\frac{1}{{x}^{2}+3x+2}$,点A为区域Ω内任意一点,则点A落在曲线C下方的概率是(  )
A.ln3-ln2B.2ln3-2ln2C.2ln2-ln3D.4ln2-2ln3

查看答案和解析>>

同步练习册答案