精英家教网 > 高中数学 > 题目详情
13.下列满足“?x∈R,f(x)+f(-x)=0且f′(x)≤0”的函数是(  )
A.f(x)=-xe|x|B.f(x)=x+sinx
C.f(x)=$\left\{\begin{array}{l}{lg(x+1),x≥0}\\{lg(1-x),x<0}{\;}\end{array}\right.$D.f(x)=x2|x|

分析 满足“?x∈R,f(x)+f(-x)=0,且f′(x)≤0”的函数为奇函数,且在R上为减函数,进而得到答案.

解答 解:满足“?x∈R,f(x)+f(-x)=0,且f′(x)≤0”的函数为奇函数,且在R上为减函数,
A中函数f(x)=-xe|x|,满足f(-x)=-f(x),即函数为奇函数,
且f′(x)=$\left\{\begin{array}{l}{(x-1{)e}^{-x},x<0}\\{-(x+1{)e}^{x},x≥0}\end{array}\right.$≤0恒成立,故在R上为减函数,
B中函数f(x)=x+sinx,满足f(-x)=-f(x),即函数为奇函数,但f′(x)=1+cosx≥0,在R上是增函数,
C中函数f(x)=$\left\{\begin{array}{l}{lg(x+1),x≥0}\\{lg(1-x),x<0}\\{\;}\end{array}\right.$,满足f(-x)=f(x),故函数为偶函数;
D中函数f(x)=x2|x|,满足f(-x)=f(x),故函数为偶函数,
故选:A.

点评 本题以全称命题为载体,考查了函数的奇偶性和函数的单调性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知{an}是首项为$\frac{1}{2}$的等差数列,Sn为数列的前n项和,若S6=2S4,则a7=(  )
A.$\frac{1}{3}$B.$\frac{19}{2}$C.-$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果θ=7rad,那么角θ所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=$\frac{1}{2}$ax2-(1+a)x+lnx(a≥0).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)当a=0时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ln(x+1)-$\frac{ax}{x+a}$,a是常数,且a≥1.
(Ⅰ)讨论f(x)零点的个数;  
(Ⅱ)证明:$\frac{2}{2n+1}$<ln(1+$\frac{1}{n}$)<$\frac{3}{3n+1}$,n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设变量x,y满足约束条件$\left\{{\begin{array}{l}{x>-1}\\{y≤1}\\{x-y+1≤0}\end{array}}\right.$,则(x-2)2+y2的最小值为(  )
A.5B.$\sqrt{5}$C.$\frac{9}{2}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设正项数列{an}是等比数列,前n项和为Sn,若S3=7a3,则公比q为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某程序框图如图所示,若输出的S=120,则判断框内应填入(  )
A.k>4?B.k>5?C.k>6?D.k>7?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设曲线y=$\frac{x+1}{x-1}$在点(3,2)处的切线与直线ax+y+3=0有相同的方向向量,则a等于(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

同步练习册答案