精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A、B、C的对边分别为a、b、c,若a2=b2+c2-bc.
(1)求A的大小;
(2)若a=15,cos(B+
π
4
)=
5
5
,求b的值.
考点:余弦定理
专题:解三角形
分析:(1)利用余弦定理表示出cosA,将已知等式变形后代入求出cosA的值,即可确定出A的度数;
(2)由B的范围确定出B+
π
4
的范围,根据cos(B+
π
4
)的值求出sin(B+
π
4
)的值,由sinB=sin[(B+
π
4
)-
π
4
],利用两角和与差的正弦函数公式及特殊角的三角函数值化简求出sinB的值,再由a与sinA的值,利用正弦定理求出b的值即可.
解答: 解:(1)∵a2=b2+c2-bc,即b2+c2-a2=bc,
∴cosA=
b2+c2-a2
2bc
=
bc
2bc
=
1
2

∵A是三角形内角,∴0<A<π,
∴A=
π
3

(2)∵0<B<
3
,∴
π
4
<B+
π
4
11π
12

∵cos(B+
π
4
)=
5
5

∴sin(B+
π
4
)=
1-(
5
5
)
2
=
2
5
5

∴sinB=sin[(B+
π
4
)-
π
4
]=sin(B+
π
4
)cos
π
4
-cos(B+
π
4
)sin
π
4
=
2
5
5
×
2
2
-
5
5
×
2
2
=
10
10

则由正弦定理
a
sinA
=
b
sinB
得:b=
asinB
sinA
=
15×
10
10
3
2
=
30
点评:此题考查正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0).四点(-
3
3
2
)、(1,
3
2
)、(
2
,0)、(
3
,-
3
2
)中有三点在椭圆C上.
(1)求椭圆C的方程;
(2)动直线l过点A(2,0),与y轴交于点R,与椭圆C交于点Q(Q不与A重合).过原点O作直线l的平行线m,直线m与椭圆C的一个交点记为P.问:是否存在常数λ使得|AQ|、λ|OP|、|AR|成等比数列?若存在,请你求出实数λ的值;若不存在,请说明缘由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD是菱形,四边形MADN是矩形,平面MADN⊥平面ABCD,E,F分别为MA,DC的中点,求证:
(Ⅰ)EF∥平面MNCB;
(Ⅱ)平面MAC⊥平面BND.

查看答案和解析>>

科目:高中数学 来源: 题型:

k为何值时,直线y=kx+2和椭圆2x2+3y2=6有两个公共点?有一个公共点?没有公共点?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数满足:①对任意0<x<1,都有f(x)<0;②f(x)+f(y)=f(xy)对任意正实数x、y都成立.
(1)求证:x>1时,f(x)>0;
(2)判断并证明f(x)的奇偶性;
(3)如果f(4)=1,解不等式f(3x+1)+f(2x-6)<3,求x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,0),点A关于y轴的对称点为B,直线AM,BM相交于点M,且两直线的斜率kAM、kBM满足kAM-kBM=2.
(1)求点M的轨迹C的方程;
(2)设轨迹C与y轴的交点为T,是否存在平行于AT的直线l,使得直线l与轨迹C有公共点,且直线AT与l的距离等于
2
2
?若存在,求直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1、F2,正△PF1F2的中心恰为椭圆的上顶点A,且
AF1
AF2
=-2.
(1)求椭圆E的方程;
(2)过点P的直线l与椭圆E交于M,N两点,点B在x轴上,△BMN是以角B为顶角的等腰直角三角形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在一次口试中,要从10道题中随机抽出3道题进行回答,答对其中两道或两道以上的题可获得及格.某考生会回答10道题中的6道题,那么他(她)获得及格的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙O:x2+y2=1,直线l:y=-1,则在⊙O上任取一点,该点到直线l的距离不小于
3
2
的概率是
 

查看答案和解析>>

同步练习册答案