精英家教网 > 高中数学 > 题目详情

【题目】下表是某校高三一次月考5个班级的数学、物理的平均成绩:

班级

1

2

3

4

5

数学(分)

111

113

119

125

127

物理(分)

92

93

96

99

100

(Ⅰ)一般来说,学生的物理成绩与数学成绩具有线性相关关系,根据上表提供的数据,求两个变量 的线性回归方程

(Ⅱ)从以上5个班级中任选两个参加某项活动,设选出的两个班级中数学平均分在115分以上的个数为,求的分布列和数学期望.

附:

【答案】(1);(2)见解析.

【解析】试题分析:(Ⅰ)分别做出横标和纵标的平均数,利用最小二乘法做出的值,再求出的值,写出线性回归方程,得到结果(Ⅱ) 的可能取值分别是0,1,2,求出相应的概率,即可求的分布列和数学期望.

试题解析:(Ⅰ)由题意得

故所求的回归直线方程为.

(Ⅱ)随机变量的所有可能的取值为0,1,2.

所以, 的分布列为:

0

1

2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解某校学生的视力情况,现采用随机抽样的方法从该校的两班中各抽取名学生进行视力检测,检测的数据如下:

名学生的视力检测结果:

名学生的视力检测结果:

(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪个班的学生的视力较好?并计算班的名学生视力的方差;

(Ⅱ)现从班的上述名学生中随机选取名,求这名学生中至少有名学生的视力低于的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限逼近圆的面积,并创立了“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,其中表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为 ( )

(参考数据:

A. 2.598,3,3.1048 B. 2.598,3,3.1056

C. 2.578,3,3.1069 D. 2.588,3,3.1108

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其图象向右平移 个单位后得到的函数为奇函数,则函数y=f(x)的图象(
A.关于点( ,0)对称
B.关于直线x= 对称
C.关于点( ,0)对称
D.关于直线x= 对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,抛物线上横坐标为的点到抛物线顶点的距离与该点到抛物线准线的距离相等。

(1)求抛物线的方程;

(2)设直线与抛物线交于两点,若,求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:

(Ⅰ)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;

(Ⅱ)求频率分布直方图中的的值;

(Ⅲ)从阅读时间在的学生中任选2人,求恰好有1人阅读时间在,另1 人阅读时间在 的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】潮州统计局就某地居民的月收入调查了人,并根据所得数据画了样本的频率分

布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在)。

(1)求居民月收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数;

(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出20个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推,如图所示的程序框图的功能是计算这20个数的和.

(1)请在程序框图中填写两个_______内缺少的内容;

(2)请补充完整该程序框图对应的计算机程序(用WHILE语句编写).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在(0,2π)内,使sinx﹣cosx<0成立的x取值范围是(
A.(
B.(0,
C.( ,π)∪( ,2π)
D.(0, )∪( ,2π)

查看答案和解析>>

同步练习册答案