精英家教网 > 高中数学 > 题目详情
12.设直线$l:\left\{{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t为参数),曲线C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),直线l与曲线C1交于A,B两点,则|AB|=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{3}$

分析 利用cos2θ+sin2θ=1可把曲线C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)化为普通方程,直线$l:\left\{{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t为参数)化为标准形式:$\left\{\begin{array}{l}{x=1+\frac{1}{2}m}\\{y=\frac{\sqrt{3}}{2}m}\end{array}\right.$,代入曲线C1的普通方程,可得:m2+m=0.即可得出.

解答 解:曲线C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)化为普通方程:x2+y2=1,
直线$l:\left\{{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t为参数)化为标准形式:$\left\{\begin{array}{l}{x=1+\frac{1}{2}m}\\{y=\frac{\sqrt{3}}{2}m}\end{array}\right.$,
代入曲线C1的普通方程,可得:m2+m=0.
解得m=0,或-1.
∴|AB|=|-1|=1.
故选:B.

点评 本题考查了参数方程化为普通方程、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.设集合A={(x,y)|(x+3)2+(y-4)2=5},B={(x,y)|(x+3)2+(y-4)2=20},C={(x,y)|2|x+3|+|y-4|=λ},若(A∪B)∩C≠∅,则实数λ的取值范围是[$\sqrt{5}$ 10].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若行列式$|\begin{array}{l}{1}&{2}&{4}\\{cos(π+x)}&{2}&{0}\\{-1}&{1}&{6}\end{array}|$中的元素4的代数余子式的值等于$\frac{3}{2}$,则实数x的取值集合为$\{x|x=±\frac{π}{3}+2kπ,k∈Z\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=2x3-9x2+12x+8.求:
(1)函数f(x)的极值;
(2)函数在区间[-1,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列各式中x的值.
(1)log8x=-$\frac{2}{3}$;
(2)logx27=$\frac{3}{4}$;
(3)ax=1(a>0且a≠1);
(4)5lgx=25;
(5)log7[log3(log2x)]=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{3}{5}t}\\{y=\frac{4}{5}t}\end{array}\right.$(t为参数),抛物线C的极坐标方程为ρsin2θ=2cosθ.
(1)求出直线l的普通方程及抛物线C的直角坐标方程;
(2)设点P(2,0),直线l与抛物线C相交于A,B两点,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{x}$+alnx-1,a∈R.
(1)讨论函数f(x)的单调性;
(2)若对任意的x>0,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xlnx
(Ⅰ)求f(x)的最小值;
(Ⅱ)求证:lnx>$\frac{1}{e^x}-\frac{2}{ex}$,x∈(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex-ax-1(a∈R),f′(x)为f(x)的导函数.
(1)若f(x)>xlnx在(0,+∞)内恒成立,求a的取值范围.
(2)若曲线y=f(x)在点(1,f(1))处的切线平行于直线y=ex+m,当x∈(t,t+2)时,其中,-2<t<0,讨论函数g(x)=$\frac{{x}^{2}+3x+3}{f′(x)}$的单调性.

查看答案和解析>>

同步练习册答案