精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=xlnx
(Ⅰ)求f(x)的最小值;
(Ⅱ)求证:lnx>$\frac{1}{e^x}-\frac{2}{ex}$,x∈(0,+∞).

分析 (Ⅰ)求出函数的导数,得到函数的单调区间,求出函数的最小值即可;
(Ⅱ)问题转化为:$xlnx>\frac{x}{e^x}-\frac{2}{e}$,令$g(x)=\frac{x}{e^x}-\frac{2}{e}$,根据函数的单调性证明即可.

解答 解:(Ⅰ)f′(x)=1+lnx,令f′(x)=0,得$x=\frac{1}{e}$,
当$0<x<\frac{1}{e}$时,f′(x)<0,f(x)在(0,$\frac{1}{e}$)上单调递减;
当$x>\frac{1}{e}$时,f′(x)>0,f(x)在($\frac{1}{e}$,+∞)上单调递增.
所以函数f(x)的最小值为$f(\frac{1}{e})=-\frac{1}{e}$.即$f(x)≥-\frac{1}{e},x∈(0,+∞)$…(6分)
(Ⅱ)将不等式化为:$xlnx>\frac{x}{e^x}-\frac{2}{e}$,
令$g(x)=\frac{x}{e^x}-\frac{2}{e}$,则g′(x)=e-x(1-x),令g′(x)=0,得x=1,
当0<x<1时,g′(x)>0,g(x)在(0,1)上单调递增;
当x>1时,g′(x)<0,g(x)在(1,+∞)上单调递减;
所以,函数当x∈(0,+∞)时,$g(x)≤g(1)=-\frac{1}{e}$…(10分)
由(Ⅰ)可知函数f(x)与g(x)取得最值时对于的x的值不同,
故x∈(0,+∞)时,f(x)>g(x),即$lnx>\frac{1}{e^x}-\frac{2}{ex},x∈(0,+∞)$…(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在多面体ABCDE中,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE=2
(1)求证:平面EDC⊥平面BDC;
(2)试判断直线AC与平面EDC所成角和二面角E-CD-A的大小的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设直线$l:\left\{{\begin{array}{l}{x=1+t}\\{y=\sqrt{3}t}\end{array}}\right.$(t为参数),曲线C1:$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),直线l与曲线C1交于A,B两点,则|AB|=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,已知曲线C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}$(θ为参数),以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.
(1)将曲线C1上的所有点的横坐标伸长为原来的$\sqrt{3}$倍,纵坐标伸长为原来的2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程;
(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在平面直角坐标系xOy中,A(1,3),B(4,2),若直线ax-y-2a=0与线段AB有公共点,则实数a的取值范围是(-∞,-3]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=4+\frac{{\sqrt{3}}}{2}t\end{array}\right.$(t为参数),圆O的参数方程为$\left\{\begin{array}{l}x=4cosθ\\ y=4sinθ\end{array}\right.$(θ为参数),直线l与圆O相交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,正方体ABCD-A1B1C1D1中,AB=2,点E是A1D1的中点,点F是CE的中点.
(Ⅰ)求证:AE∥平面BDF;
(Ⅱ)求二面角B-DE-C的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx-ax2+(2-a)x.
(1)若函数f(x)在[1,+∞)上为减函数,求a的取值范围;
(2)当a=1时,g(x)=x2-2x+b,当x∈[$\frac{1}{2}$,2]时,f(x)与g(x)有两个交点,求实数b的取值范围;
(3)证明:$\frac{2}{1^2}+\frac{3}{2^2}+\frac{4}{3^2}+\frac{5}{4^2}+…+\frac{n+1}{n^2}$>ln(n+1)(?n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系中,过点P(3,1)的直线l的参数方程为$\left\{{\begin{array}{l}{x=3+tcosα}\\{y=1+tsinα}\end{array}}\right.$(t为参数,α为l的倾斜角).以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系.曲线C1:ρ=2cosθ,曲线C2:ρ=4cosθ.
(Ⅰ)若直线l与曲线C1有且仅有一个公共点,求直线l的极坐标方程;
(Ⅱ)若直线l与曲线C1交于不同两点C、D,与C2交于不同两点A、B,这四点从左至右依次为B、D、C、A,求|AC|-|BD|的取值范围.

查看答案和解析>>

同步练习册答案